General Information of Drug Off-Target (DOT) (ID: OTOGLK0I)

DOT Name Uncharacterized protein C9orf152 (C9ORF152)
Gene Name C9ORF152
UniProt ID
CI152_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF15733
Sequence
MEGLPCPCPALPHFWQLRSHLMAEGSRTQAPGKGPPLSIQFLRAQYEGLKRQQRTQAHLL
VLPKGGNTPAPAESMVNAVWINKERRSSLSLEEADSEVEGRLEEAAQGCLQAPKSPWHTH
LEMHCLVQTSPQDTSHQVHHRGKLVGSDQRLPPEGDTHLFETNQMTQQGTGIPEAAQLPC
QVGNTQTKAVESGLKFSTQCPLSIKNPHRSGKPAYYPFPQRKTPRISQAARNLGLYGSA

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Uncharacterized protein C9orf152 (C9ORF152). [1]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Uncharacterized protein C9orf152 (C9ORF152). [5]
------------------------------------------------------------------------------------
7 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Quercetin DM3NC4M Approved Quercetin increases the expression of Uncharacterized protein C9orf152 (C9ORF152). [2]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the expression of Uncharacterized protein C9orf152 (C9ORF152). [3]
OTX-015 DMI8RG1 Phase 1/2 OTX-015 decreases the expression of Uncharacterized protein C9orf152 (C9ORF152). [4]
Mivebresib DMCPF90 Phase 1 Mivebresib decreases the expression of Uncharacterized protein C9orf152 (C9ORF152). [4]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Uncharacterized protein C9orf152 (C9ORF152). [6]
Coumestrol DM40TBU Investigative Coumestrol decreases the expression of Uncharacterized protein C9orf152 (C9ORF152). [7]
Acetaldehyde DMJFKG4 Investigative Acetaldehyde decreases the expression of Uncharacterized protein C9orf152 (C9ORF152). [8]
------------------------------------------------------------------------------------
⏷ Show the Full List of 7 Drug(s)

References

1 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
2 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
3 LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4179-E4188.
4 Comprehensive transcriptome profiling of BET inhibitor-treated HepG2 cells. PLoS One. 2022 Apr 29;17(4):e0266966. doi: 10.1371/journal.pone.0266966. eCollection 2022.
5 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
6 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
7 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
8 Transcriptome profile analysis of saturated aliphatic aldehydes reveals carbon number-specific molecules involved in pulmonary toxicity. Chem Res Toxicol. 2014 Aug 18;27(8):1362-70.