General Information of Drug Combination (ID: DCNBZC8)

Drug Combination Name
DFN-15 Nilotinib
Indication
Disease Entry Status REF
Adenocarcinoma Investigative [1]
Component Drugs DFN-15   DM3BF9B Nilotinib   DM7HXWT
N.A. Small molecular drug
High-throughput Screening Result Testing Cell Line: HT29
Zero Interaction Potency (ZIP) Score: 3.42
Bliss Independence Score: 7.69
Loewe Additivity Score: 5.58
LHighest Single Agent (HSA) Score: 3.1

Molecular Interaction Atlas of This Drug Combination

Molecular Interaction Atlas (MIA)
Indication(s) of DFN-15
Disease Entry ICD 11 Status REF
Migraine 8A80 Phase 3 [2]
Indication(s) of Nilotinib
Disease Entry ICD 11 Status REF
Chronic myelogenous leukaemia 2A20.0 Approved [3]
Nilotinib Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Fusion protein Bcr-Abl (Bcr-Abl) TTS7G69 BCR_HUMAN-ABL1_HUMAN Modulator [7]
------------------------------------------------------------------------------------
Nilotinib Interacts with 5 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
Multidrug resistance-associated protein 2 (ABCC2) DTFI42L MRP2_HUMAN Substrate [8]
P-glycoprotein 1 (ABCB1) DTUGYRD MDR1_HUMAN Substrate [9]
Breast cancer resistance protein (ABCG2) DTI7UX6 ABCG2_HUMAN Substrate [8]
Organic anion transporting polypeptide 1B1 (SLCO1B1) DT3D8F0 SO1B1_HUMAN Substrate [10]
Organic anion transporting polypeptide 1B3 (SLCO1B3) DT9C1TS SO1B3_HUMAN Substrate [10]
------------------------------------------------------------------------------------
Nilotinib Interacts with 2 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [11]
Cytochrome P450 2C8 (CYP2C8) DES5XRU CP2C8_HUMAN Metabolism [12]
------------------------------------------------------------------------------------
Nilotinib Interacts with 35 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Broad substrate specificity ATP-binding cassette transporter ABCG2 (ABCG2) OTW8V2V1 ABCG2_HUMAN Affects Response To Substance [13]
ATP-dependent translocase ABCB1 (ABCB1) OTEJROBO MDR1_HUMAN Affects Response To Substance [14]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Increases Activity [15]
Caspase-7 (CASP7) OTAPJ040 CASP7_HUMAN Increases Activity [15]
Potassium voltage-gated channel subfamily H member 2 (KCNH2) OTZX881H KCNH2_HUMAN Decreases Activity [15]
Acetyl-CoA carboxylase 1 (ACACA) OT5CQPZY ACACA_HUMAN Increases Phosphorylation [15]
Retinal dehydrogenase 2 (ALDH1A2) OTJB560Z AL1A2_HUMAN Decreases Expression [5]
Tyrosine-protein kinase ABL1 (ABL1) OT09YVXH ABL1_HUMAN Decreases Phosphorylation [6]
Protein c-Fos (FOS) OTJBUVWS FOS_HUMAN Increases Expression [6]
Cellular tumor antigen p53 (TP53) OTIE1VH3 P53_HUMAN Increases Secretion [16]
Transcription factor Jun (JUN) OTCYBO6X JUN_HUMAN Increases Expression [6]
Homeobox protein Hox-B7 (HOXB7) OTC7WYU8 HXB7_HUMAN Increases Expression [5]
Poly polymerase 1 (PARP1) OT310QSG PARP1_HUMAN Increases Cleavage [17]
Apoptosis regulator Bcl-2 (BCL2) OT9DVHC0 BCL2_HUMAN Decreases Expression [17]
Endoplasmic reticulum chaperone BiP (HSPA5) OTFUIRAO BIP_HUMAN Increases Expression [6]
Breakpoint cluster region protein (BCR) OTCN76C1 BCR_HUMAN Decreases Phosphorylation [18]
Transcription factor JunB (JUNB) OTG2JXV5 JUNB_HUMAN Increases Expression [6]
Homeobox protein Hox-B9 (HOXB9) OTMVHQOU HXB9_HUMAN Increases Expression [5]
Cyclic AMP-dependent transcription factor ATF-6 alpha (ATF6) OTAFHAVI ATF6A_HUMAN Decreases Expression [6]
Histidine decarboxylase (HDC) OT4WA5YQ DCHS_HUMAN Decreases Expression [19]
Paired box protein Pax-3 (PAX3) OTN5PJZV PAX3_HUMAN Decreases Expression [5]
Alanine aminotransferase 1 (GPT) OTOXOA0Q ALAT1_HUMAN Increases Secretion [20]
Paired box protein Pax-6 (PAX6) OTOC9876 PAX6_HUMAN Increases Expression [5]
DNA damage-inducible transcript 3 protein (DDIT3) OTI8YKKE DDIT3_HUMAN Increases Expression [6]
Crk-like protein (CRKL) OTOYSD1R CRKL_HUMAN Decreases Phosphorylation [6]
Glutamate--cysteine ligase regulatory subunit (GCLM) OT6CP234 GSH0_HUMAN Increases Expression [6]
Homeobox protein MOX-1 (MEOX1) OTJEMT2D MEOX1_HUMAN Decreases Expression [5]
Caspase-9 (CASP9) OTD4RFFG CASP9_HUMAN Increases Cleavage [17]
Mesoderm posterior protein 2 (MESP2) OT7H4LYA MESP2_HUMAN Decreases Expression [5]
Transcription factor 15 (TCF15) OTA6UCWC TCF15_HUMAN Decreases Expression [5]
Oligodendrocyte transcription factor 3 (OLIG3) OTU8XLAF OLIG3_HUMAN Increases Expression [5]
ER degradation-enhancing alpha-mannosidase-like protein 1 (EDEM1) OTWHN69S EDEM1_HUMAN Increases Expression [6]
Eyes absent homolog 1 (EYA1) OTHU807A EYA1_HUMAN Decreases Expression [5]
Forkhead box protein C2 (FOXC2) OT83P1E0 FOXC2_HUMAN Decreases Expression [5]
Neurogenin-2 (NEUROG2) OTAEMIGT NGN2_HUMAN Increases Expression [5]
------------------------------------------------------------------------------------
⏷ Show the Full List of 35 DOT(s)

Test Results of This Drug Combination in Other Disease Systems

Indication DrugCom ID Cell Line Status REF
Amelanotic melanoma DCA7PGM MDA-MB-435 Investigative [1]
Large cell lung carcinoma DCPRH88 NCI-H460 Investigative [1]
Lung adenocarcinoma DCWAPQB HOP-62 Investigative [1]
Malignant melanoma DCM798H LOX IMVI Investigative [1]
------------------------------------------------------------------------------------

References

1 Loss of function mutations in VARS encoding cytoplasmic valyl-tRNA synthetase cause microcephaly, seizures, and progressive cerebral atrophy.Hum Genet. 2018 Apr;137(4):293-303. doi: 10.1007/s00439-018-1882-3. Epub 2018 Apr 24.
2 Clinical pipeline report, company report or official report of the Pharmaceutical Research and Manufacturers of America (PhRMA)
3 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 5697).
4 Assessment of the inhibition potential of Licochalcone A against human UDP-glucuronosyltransferases. Food Chem Toxicol. 2016 Apr;90:112-22.
5 Exposure-based assessment of chemical teratogenicity using morphogenetic aggregates of human embryonic stem cells. Reprod Toxicol. 2020 Jan;91:74-91. doi: 10.1016/j.reprotox.2019.10.004. Epub 2019 Nov 8.
6 Endoplasmic reticulum stress-mediated apoptosis in imatinib-resistant leukemic K562-r cells triggered by AMN107 combined with arsenic trioxide. Exp Biol Med (Maywood). 2013 Aug 1;238(8):932-42. doi: 10.1177/1535370213492689. Epub 2013 Jul 24.
7 2007 FDA drug approvals: a year of flux. Nat Rev Drug Discov. 2008 Feb;7(2):107-9.
8 Interaction of nilotinib, dasatinib and bosutinib with ABCB1 and ABCG2: implications for altered anti-cancer effects and pharmacological properties. Br J Pharmacol. 2009 Oct;158(4):1153-64.
9 KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017 Jan 4;45(D1):D353-D361. (dg:DG01665)
10 Contribution of OATP1B1 and OATP1B3 to the disposition of sorafenib and sorafenib-glucuronide. Clin Cancer Res. 2013 Mar 15;19(6):1458-66.
11 Drug interactions with the tyrosine kinase inhibitors imatinib, dasatinib, and nilotinib. Blood. 2011 Feb 24;117(8):e75-87.
12 Role of cytochrome P450 2C8 in drug metabolism and interactions. Pharmacol Rev. 2016 Jan;68(1):168-241.
13 Resistance to daunorubicin, imatinib, or nilotinib depends on expression levels of ABCB1 and ABCG2 in human leukemia cells. Chem Biol Interact. 2014 Aug 5;219:203-10. doi: 10.1016/j.cbi.2014.06.009. Epub 2014 Jun 19.
14 Reversal of ABCB1 mediated efflux by imatinib and nilotinib in cells expressing various transporter levels. Chem Biol Interact. 2017 Aug 1;273:171-179. doi: 10.1016/j.cbi.2017.06.012. Epub 2017 Jun 13.
15 Multi-parameter in vitro toxicity testing of crizotinib, sunitinib, erlotinib, and nilotinib in human cardiomyocytes. Toxicol Appl Pharmacol. 2013 Oct 1;272(1):245-55.
16 p53 Gene (NY-CO-13) Levels in Patients with Chronic Myeloid Leukemia: The Role of Imatinib and Nilotinib. Diseases. 2018 Jan 25;6(1):13. doi: 10.3390/diseases6010013.
17 Nilotinib reduced the viability of human ovarian cancer cells via mitochondria-dependent apoptosis, independent of JNK activation. Toxicol In Vitro. 2016 Mar;31:1-11. doi: 10.1016/j.tiv.2015.11.002. Epub 2015 Nov 6.
18 AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell. 2009 Nov 6;16(5):401-12. doi: 10.1016/j.ccr.2009.09.028.
19 The CML-related oncoprotein BCR/ABL induces expression of histidine decarboxylase (HDC) and the synthesis of histamine in leukemic cells. Blood. 2006 Nov 15;108(10):3538-47. doi: 10.1182/blood-2005-12-028456. Epub 2006 Jul 18.
20 Cytotoxicity of 34 FDA approved small-molecule kinase inhibitors in primary rat and human hepatocytes. Toxicol Lett. 2018 Jul;291:138-148. doi: 10.1016/j.toxlet.2018.04.010. Epub 2018 Apr 12.