General Information of Drug Combination (ID: DCX89UH)

Drug Combination Name
JTC-801 Verapamil
Indication
Disease Entry Status REF
DD2 Investigative [1]
Component Drugs JTC-801   DMV3UN4 Verapamil   DMA7PEW
Small molecular drug Small molecular drug
2D MOL 2D MOL
3D MOL is unavailable 3D MOL
High-throughput Screening Result Testing Cell Line: DD2
Zero Interaction Potency (ZIP) Score: 2.742
Bliss Independence Score: 8.346
Loewe Additivity Score: 2.65
LHighest Single Agent (HSA) Score: 5.469

Molecular Interaction Atlas of This Drug Combination

Molecular Interaction Atlas (MIA)
Indication(s) of JTC-801
Disease Entry ICD 11 Status REF
Pain MG30-MG3Z Discontinued in Phase 2 [2]
JTC-801 Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Nociceptin receptor (OPRL1) TTNT7K8 OPRX_HUMAN Antagonist [6]
------------------------------------------------------------------------------------
Indication(s) of Verapamil
Disease Entry ICD 11 Status REF
Angina pectoris BA40 Approved [3]
Atrial fibrillation BC81.3 Approved [3]
Classic phenylketonuria N.A. Approved [3]
Hypertension BA00-BA04 Approved [4]
Malignant essential hypertension BA00 Approved [3]
Coronavirus Disease 2019 (COVID-19) 1D6Y Phase 2/3 [5]
Verapamil Interacts with 2 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Voltage-gated calcium channel alpha Cav3.1 (CACNA1G) TT729IR CAC1G_HUMAN Blocker [7]
HUMAN two pore channel subtype 2 (TPC2) TTHQJ2Y TPC2_HUMAN Blocker [8]
------------------------------------------------------------------------------------
Verapamil Interacts with 6 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
Multidrug resistance-associated protein 1 (ABCC1) DTSYQGK MRP1_HUMAN Substrate [9]
P-glycoprotein 1 (ABCB1) DTUGYRD MDR1_HUMAN Substrate [10]
Organic cation transporter 1 (SLC22A1) DTT79CX S22A1_HUMAN Substrate [11]
Multidrug resistance protein 3 (ABCB4) DTZRMK5 MDR3_HUMAN Substrate [12]
Organic cation/carnitine transporter 2 (SLC22A5) DT3HUVD S22A5_HUMAN Substrate [13]
Organic cation/carnitine transporter 1 (SLC22A4) DT2EG60 S22A4_HUMAN Substrate [14]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 DTP(s)
Verapamil Interacts with 10 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [15]
Cytochrome P450 1A2 (CYP1A2) DEJGDUW CP1A2_HUMAN Metabolism [16]
Cytochrome P450 3A5 (CYP3A5) DEIBDNY CP3A5_HUMAN Metabolism [17]
Cytochrome P450 2E1 (CYP2E1) DEVDYN7 CP2E1_HUMAN Metabolism [18]
Cytochrome P450 3A7 (CYP3A7) DERD86B CP3A7_HUMAN Metabolism [19]
Cytochrome P450 2C18 (CYP2C18) DEZMWRE CP2CI_HUMAN Metabolism [18]
Cytochrome P450 2C8 (CYP2C8) DES5XRU CP2C8_HUMAN Metabolism [20]
Cytochrome P450 2C9 (CYP2C9) DE5IED8 CP2C9_HUMAN Metabolism [21]
Cytochrome P450 2B6 (CYP2B6) DEPKLMQ CP2B6_HUMAN Metabolism [18]
Mephenytoin 4-hydroxylase (CYP2C19) DEGTFWK CP2CJ_HUMAN Metabolism [22]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 DME(s)
Verapamil Interacts with 41 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
ATP-dependent translocase ABCB1 (ABCB1) OTEJROBO MDR1_HUMAN Increases Expression [23]
Potassium voltage-gated channel subfamily H member 2 (KCNH2) OTZX881H KCNH2_HUMAN Decreases Activity [24]
Cytochrome P450 2C8 (CYP2C8) OTHCWT42 CP2C8_HUMAN Decreases Activity [25]
Cytochrome P450 3A4 (CYP3A4) OTQGYY83 CP3A4_HUMAN Decreases Activity [17]
Cytochrome P450 3A5 (CYP3A5) OTSXFBXB CP3A5_HUMAN Decreases Activity [17]
Multidrug and toxin extrusion protein 2 (SLC47A2) OTF2CNRD S47A2_HUMAN Decreases Activity [26]
Dynamin-1-like protein (DNM1L) OTXK1Q1G DNM1L_HUMAN Increases Phosphorylation [27]
Nuclear receptor subfamily 1 group I member 2 (NR1I2) OTC5U0N5 NR1I2_HUMAN Increases Activity [28]
Organic cation/carnitine transporter 2 (SLC22A5) OTC36TYB S22A5_HUMAN Decreases Activity [29]
ATP-binding cassette sub-family C member 6 (ABCC6) OTZT0LKT MRP6_HUMAN Decreases Activity [30]
Metalloproteinase inhibitor 1 (TIMP1) OTOXC51H TIMP1_HUMAN Affects Expression [31]
Protein c-Fos (FOS) OTJBUVWS FOS_HUMAN Increases Expression [32]
Natriuretic peptides A (NPPA) OTMQNTNX ANF_HUMAN Increases Expression [33]
Prolactin (PRL) OTWFQGX7 PRL_HUMAN Increases Expression [34]
Platelet basic protein (PPBP) OT1FHGQS CXCL7_HUMAN Decreases Expression [35]
Platelet factor 4 (PF4) OTEMJU68 PLF4_HUMAN Decreases Expression [35]
Proto-oncogene tyrosine-protein kinase receptor Ret (RET) OTLU040A RET_HUMAN Affects Expression [31]
Heme oxygenase 1 (HMOX1) OTC1W6UX HMOX1_HUMAN Increases Expression [36]
Apoptosis regulator Bcl-2 (BCL2) OT9DVHC0 BCL2_HUMAN Decreases Expression [37]
Clusterin (CLU) OTQGG0JM CLUS_HUMAN Affects Expression [31]
Neuromodulin (GAP43) OT2OTGGV NEUM_HUMAN Affects Expression [31]
Phosphatidylcholine translocator ABCB4 (ABCB4) OTE6PY83 MDR3_HUMAN Decreases Expression [38]
Potassium voltage-gated channel subfamily A member 3 (KCNA3) OTXSP3AA KCNA3_HUMAN Decreases Activity [39]
Galanin peptides (GAL) OTB3VPTO GALA_HUMAN Affects Expression [31]
Alpha-1D adrenergic receptor (ADRA1D) OTW2CD1O ADA1D_HUMAN Affects Binding [40]
MHC class II transactivator (CIITA) OTRJNZFO C2TA_HUMAN Affects Expression [41]
Multidrug resistance-associated protein 1 (ABCC1) OTGUN89S MRP1_HUMAN Decreases Activity [42]
Alpha-1A adrenergic receptor (ADRA1A) OTUIWCL5 ADA1A_HUMAN Affects Binding [40]
Alpha-1B adrenergic receptor (ADRA1B) OTSAYAFD ADA1B_HUMAN Affects Binding [40]
Apoptosis regulator BAX (BAX) OTAW0V4V BAX_HUMAN Increases Expression [37]
Nuclear factor erythroid 2-related factor 2 (NFE2L2) OT0HENJ5 NF2L2_HUMAN Affects Localization [36]
Multidrug and toxin extrusion protein 1 (SLC47A1) OTZX0U5Q S47A1_HUMAN Decreases Activity [43]
Potassium voltage-gated channel subfamily D member 3 (KCND3) OTRPIH7J KCND3_HUMAN Decreases Activity [44]
Voltage-dependent L-type calcium channel subunit alpha-1C (CACNA1C) OT6KFNMS CAC1C_HUMAN Increases Response To Substance [45]
Potassium voltage-gated channel subfamily KQT member 1 (KCNQ1) OT8SPJNX KCNQ1_HUMAN Increases ADR [46]
Sodium channel protein type 5 subunit alpha (SCN5A) OTGYZWR6 SCN5A_HUMAN Increases ADR [46]
Calcium-activated potassium channel subunit beta-1 (KCNMB1) OTO4KNJ4 KCMB1_HUMAN Affects Response To Substance [47]
Beta-1 adrenergic receptor (ADRB1) OTQBWN4U ADRB1_HUMAN Affects Response To Substance [48]
Beta-1 adrenergic receptor (ADRB1) OTQBWN4U ADRB1_HUMAN Increases Response [48]
Cytochrome P450 2D6 (CYP2D6) OTZJC802 CP2D6_HUMAN Increases ADR [46]
Potassium voltage-gated channel subfamily E member 1 (KCNE1) OTZNQUW9 KCNE1_HUMAN Increases ADR [46]
------------------------------------------------------------------------------------
⏷ Show the Full List of 41 DOT(s)

References

1 Recurrent recessive mutation in deoxyguanosine kinase causes idiopathic noncirrhotic portal hypertension.Hepatology. 2016 Jun;63(6):1977-86. doi: 10.1002/hep.28499. Epub 2016 Mar 31.
2 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 1692).
3 Verapamil FDA Label
4 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 2406).
5 ClinicalTrials.gov (NCT04351763) Amiodarone or Verapamil in COVID-19 Hospitalized Patients With Symptoms. U.S. National Institutes of Health.
6 Nociceptin receptor antagonist JTC-801 inhibits nitrous oxide-induced analgesia in mice. J Anesth. 2009;23(2):301-3.
7 Mechanism of tissue-selective drug action in the cardiovascular system. Mol Interv. 2005 Apr;5(2):84-93.
8 Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2020 Mar 27;11(1):1620.
9 Human intestinal transporter database: QSAR modeling and virtual profiling of drug uptake, efflux and interactions. Pharm Res. 2013 Apr;30(4):996-1007.
10 Improved expression and purification of human multidrug resistance protein MDR1 from baculovirus-infected insect cells. Protein Expr Purif. 2009 Jul;66(1):7-14.
11 Implications of genetic polymorphisms in drug transporters for pharmacotherapy. Cancer Lett. 2006 Mar 8;234(1):4-33.
12 MDR3 P-glycoprotein, a phosphatidylcholine translocase, transports several cytotoxic drugs and directly interacts with drugs as judged by interference with nucleotide trapping. J Biol Chem. 2000 Aug 4;275(31):23530-9.
13 Genetic variations of the SLC22A5 gene in the Chinese and Indian populations of Singapore. Drug Metab Pharmacokinet. 2010;25(1):112-9.
14 Novel membrane transporter OCTN1 mediates multispecific, bidirectional, and pH-dependent transport of organic cations. J Pharmacol Exp Ther. 1999 May;289(2):768-73.
15 Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr Med Chem. 2009;16(27):3480-675.
16 Identification of P450 enzymes involved in metabolism of verapamil in humans. Naunyn Schmiedebergs Arch Pharmacol. 1993 Sep;348(3):332-7.
17 Differential mechanism-based inhibition of CYP3A4 and CYP3A5 by verapamil. Drug Metab Dispos. 2005 May;33(5):664-71.
18 Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab Rev. 2002 Feb-May;34(1-2):83-448.
19 Prediction of cytochrome P450 3A inhibition by verapamil enantiomers and their metabolites. Drug Metab Dispos. 2004 Feb;32(2):259-66.
20 Differential expression and function of CYP2C isoforms in human intestine and liver. Pharmacogenetics. 2003 Sep;13(9):565-75.
21 Drug interactions with calcium channel blockers: possible involvement of metabolite-intermediate complexation with CYP3A. Drug Metab Dispos. 2000 Feb;28(2):125-30.
22 Cytochromes of the P450 2C subfamily are the major enzymes involved in the O-demethylation of verapamil in humans. Naunyn Schmiedebergs Arch Pharmacol. 1995 Dec;353(1):116-21.
23 Rapid induction of P-glycoprotein expression by high permeability compounds in colonic cells in vitro: a possible source of transporter mediated drug interactions?. Biochem Pharmacol. 2004 Aug 15;68(4):783-90. doi: 10.1016/j.bcp.2004.05.006.
24 Automated tight seal electrophysiology for assessing the potential hERG liability of pharmaceutical compounds. Assay Drug Dev Technol. 2004 Oct;2(5):497-506. doi: 10.1089/adt.2004.2.497.
25 Mechanism-based inactivation of human cytochrome P4502C8 by drugs in vitro. J Pharmacol Exp Ther. 2004 Dec;311(3):996-1007.
26 Inhibition of organic anion transporter (OAT) activity by cigarette smoke condensate. Toxicol In Vitro. 2017 Oct;44:27-35.
27 Low doses of BPF-induced hypertrophy in cardiomyocytes derived from human embryonic stem cells via disrupting the mitochondrial fission upon the interaction between ER and calcineurin A-DRP1 signaling pathway. Cell Biol Toxicol. 2022 Jun;38(3):409-426. doi: 10.1007/s10565-021-09615-y. Epub 2021 May 22.
28 Screening of a chemical library reveals novel PXR-activating pharmacologic compounds. Toxicol Lett. 2015 Jan 5;232(1):193-202. doi: 10.1016/j.toxlet.2014.10.009. Epub 2014 Oct 16.
29 Expression, localization, and function of the carnitine transporter octn2 (slc22a5) in human placenta. Drug Metab Dispos. 2005 Jan;33(1):31-7. doi: 10.1124/dmd.104.001560. Epub 2004 Oct 14.
30 Multidrug resistance protein-6 (MRP6) in human dermal fibroblasts. Comparison between cells from normal subjects and from Pseudoxanthoma elasticum patients. Matrix Biol. 2003 Nov;22(6):491-500. doi: 10.1016/j.matbio.2003.09.001.
31 Discovery of molecular mechanisms of neuroprotection using cell-based bioassays and oligonucleotide arrays. Physiol Genomics. 2002 Oct 29;11(2):45-52. doi: 10.1152/physiolgenomics.00064.2002.
32 Selection of drugs to test the specificity of the Tg.AC assay by screening for induction of the gadd153 promoter in vitro. Toxicol Sci. 2003 Aug;74(2):260-70. doi: 10.1093/toxsci/kfg113. Epub 2003 May 2.
33 Plasma atrial natriuretic peptide levels in essential hypertension after treatment with verapamil. Eur J Drug Metab Pharmacokinet. 2002 Jan-Mar;27(1):45-8. doi: 10.1007/BF03190404.
34 Verapamil-induced hyperprolactinemia complicated by a pituitary incidentaloma. Ann Pharmacother. 1995 Oct;29(10):999-1001. doi: 10.1177/106002809502901009.
35 [Unstable stenocardia: indicators of platelet activity and the effect of verapamil]. Biull Vsesoiuznogo Kardiol Nauchn Tsentra AMN SSSR. 1987;10(2):33-9.
36 Protective role of HO-1 for alcohol-dependent liver damage. Dig Dis. 2010;28(6):792-8. doi: 10.1159/000324287. Epub 2011 Apr 27.
37 Verapamil potentiates anti-glioblastoma efficacy of temozolomide by modulating apoptotic signaling. Toxicol In Vitro. 2018 Oct;52:306-313. doi: 10.1016/j.tiv.2018.07.001. Epub 2018 Jul 9.
38 8-Methoxypsoralen disrupts MDR3-mediated phospholipids efflux and bile acid homeostasis and its relevance to hepatotoxicity. Toxicology. 2017 Jul 1;386:40-48. doi: 10.1016/j.tox.2017.05.011. Epub 2017 May 24.
39 Identification of quaternary ammonium compounds as potent inhibitors of hERG potassium channels. Toxicol Appl Pharmacol. 2011 May 1;252(3):250-8. doi: 10.1016/j.taap.2011.02.016. Epub 2011 Feb 26.
40 Effects of quinidine and verapamil on human cardiovascular alpha1-adrenoceptors. Circulation. 1998 Apr 7;97(13):1227-30. doi: 10.1161/01.cir.97.13.1227.
41 Systems pharmacological analysis of drugs inducing stevens-johnson syndrome and toxic epidermal necrolysis. Chem Res Toxicol. 2015 May 18;28(5):927-34. doi: 10.1021/tx5005248. Epub 2015 Apr 3.
42 Glutathione S-transferase M1 and multidrug resistance protein 1 act in synergy to protect melanoma cells from vincristine effects. Mol Pharmacol. 2004 Apr;65(4):897-905. doi: 10.1124/mol.65.4.897.
43 Neonicotinoid pesticides poorly interact with human drug transporters. J Biochem Mol Toxicol. 2019 Oct;33(10):e22379. doi: 10.1002/jbt.22379. Epub 2019 Jul 31.
44 hKv4.3 channel characterization and regulation by calcium channel antagonists. Biochem Biophys Res Commun. 2001 Feb 23;281(2):452-60. doi: 10.1006/bbrc.2001.4396.
45 CACNA1C gene polymorphisms, cardiovascular disease outcomes, and treatment response. Circ Cardiovasc Genet. 2009 Aug;2(4):362-70. doi: 10.1161/CIRCGENETICS.109.857839. Epub 2009 Jun 3.
46 ADReCS-Target: target profiles for aiding drug safety research and application. Nucleic Acids Res. 2018 Jan 4;46(D1):D911-D917. doi: 10.1093/nar/gkx899.
47 KCNMB1 genotype influences response to verapamil SR and adverse outcomes in the INternational VErapamil SR/Trandolapril STudy (INVEST). Pharmacogenet Genomics. 2007 Sep;17(9):719-29. doi: 10.1097/FPC.0b013e32810f2e3c.
48 A common 1-adrenergic receptor polymorphism predicts favorable response to rate-control therapy in atrial fibrillation. J Am Coll Cardiol. 2012 Jan 3;59(1):49-56. doi: 10.1016/j.jacc.2011.08.061.