General Information of Drug Off-Target (DOT) (ID: OT950KYC)

DOT Name Nucleoredoxin-like protein 2 (NXNL2)
Synonyms Rod-derived cone viability factor 2; RdCVF2
Gene Name NXNL2
UniProt ID
NXNL2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF13905
Sequence
MVDILGERHLVTCKGATVEAEAALQNKVVALYFAAARCAPSRDFTPLLCDFYTALVAEAR
RPAPFEVVFVSADGSSQEMLDFMRELHGAWLALPFHDPYRHELRKRYNVTAIPKLVIVKQ
NGEVITNKGRKQIRERGLACFQDWVEAADIFQNFSV
Function May be involved in the maintenance of both the function and the viability of sensory neurons, including photoreceptors and olfactory neurons.

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Nucleoredoxin-like protein 2 (NXNL2). [1]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Nucleoredoxin-like protein 2 (NXNL2). [4]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Nucleoredoxin-like protein 2 (NXNL2). [7]
------------------------------------------------------------------------------------
6 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Nucleoredoxin-like protein 2 (NXNL2). [2]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Nucleoredoxin-like protein 2 (NXNL2). [3]
Zoledronate DMIXC7G Approved Zoledronate decreases the expression of Nucleoredoxin-like protein 2 (NXNL2). [5]
Genistein DM0JETC Phase 2/3 Genistein increases the expression of Nucleoredoxin-like protein 2 (NXNL2). [6]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Nucleoredoxin-like protein 2 (NXNL2). [8]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of Nucleoredoxin-like protein 2 (NXNL2). [9]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
3 Effects of progesterone treatment on expression of genes involved in uterine quiescence. Reprod Sci. 2011 Aug;18(8):781-97.
4 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
5 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
6 Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner. Genome Res. 2012 Nov;22(11):2153-62.
7 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
8 Comparative Analysis of Transcriptomic Changes including mRNA and microRNA Expression Induced by the Xenoestrogens Zearalenone and Bisphenol A in Human Ovarian Cells. Toxins (Basel). 2023 Feb 9;15(2):140. doi: 10.3390/toxins15020140.
9 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.