General Information of Drug Combination (ID: DCF9I9G)

Drug Combination Name
Quetiapine Paroxetine
Indication
Disease Entry Status REF
Combat Disorders Phase 1 [1]
Component Drugs Quetiapine   DM1N62C Paroxetine   DM5PVQE
Small molecular drug Small molecular drug
2D MOL 2D MOL
3D MOL 3D MOL

Molecular Interaction Atlas of This Drug Combination

Molecular Interaction Atlas (MIA)
Indication(s) of Quetiapine
Disease Entry ICD 11 Status REF
Anorexia nervosa cachexia 6B80 Approved [2]
Bipolar depression N.A. Approved [2]
Bipolar disorder 6A60 Approved [2]
Bipolar I disorder N.A. Approved [2]
Delirium N.A. Approved [2]
Major depressive disorder 6A70.3 Approved [2]
Methamphetamine dependence 6C46.2 Approved [2]
Schizoaffective disorder 6A21 Approved [2]
Schizophrenia 6A20 Approved [3]
Alcohol dependence 6C40.2 Phase 3 [4]
Quetiapine Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Dopamine D2 receptor (D2R) TTEX248 DRD2_HUMAN Agonist [7]
------------------------------------------------------------------------------------
Quetiapine Interacts with 2 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
P-glycoprotein 1 (ABCB1) DTUGYRD MDR1_HUMAN Substrate [8]
Solute carrier family 22 member 23 (SLC22A23) DTMJK12 S22AN_HUMAN Substrate [9]
------------------------------------------------------------------------------------
Quetiapine Interacts with 5 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [10]
Cytochrome P450 2D6 (CYP2D6) DECB0K3 CP2D6_HUMAN Metabolism [11]
Cytochrome P450 3A5 (CYP3A5) DEIBDNY CP3A5_HUMAN Metabolism [12]
Cytochrome P450 3A7 (CYP3A7) DERD86B CP3A7_HUMAN Metabolism [11]
Mephenytoin 4-hydroxylase (CYP2C19) DEGTFWK CP2CJ_HUMAN Metabolism [11]
------------------------------------------------------------------------------------
Indication(s) of Paroxetine
Disease Entry ICD 11 Status REF
Anxiety disorder 6B00-6B0Z Approved [5]
Depression 6A70-6A7Z Approved [6]
Hot flushes GA30 Approved [5]
Major depressive disorder 6A70.3 Approved [5]
Obsessive compulsive disorder 6B20 Approved [5]
Panic disorder 6B01 Approved [5]
Post-traumatic stress disorder 6B40 Approved [5]
Paroxetine Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Serotonin transporter (SERT) TT3ROYC SC6A4_HUMAN Modulator [13]
------------------------------------------------------------------------------------
Paroxetine Interacts with 1 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
P-glycoprotein 1 (ABCB1) DTUGYRD MDR1_HUMAN Substrate [14]
------------------------------------------------------------------------------------
Paroxetine Interacts with 4 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [15]
Cytochrome P450 1A2 (CYP1A2) DEJGDUW CP1A2_HUMAN Metabolism [16]
Cytochrome P450 2D6 (CYP2D6) DECB0K3 CP2D6_HUMAN Metabolism [17]
Mephenytoin 4-hydroxylase (CYP2C19) DEGTFWK CP2CJ_HUMAN Metabolism [18]
------------------------------------------------------------------------------------
Paroxetine Interacts with 17 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
ATP-dependent translocase ABCB1 (ABCB1) OTEJROBO MDR1_HUMAN Increases Response [19]
Sodium-dependent serotonin transporter (SLC6A4) OT6FGDLW SC6A4_HUMAN Decreases Expression [20]
Prostaglandin G/H synthase 2 (PTGS2) OT75U9M4 PGH2_HUMAN Decreases Expression [21]
Signal transducer and activator of transcription 3 (STAT3) OTAAGKYZ STAT3_HUMAN Decreases Expression [21]
Cytochrome P450 2B6 (CYP2B6) OTOYO4S7 CP2B6_HUMAN Decreases Activity [22]
Aromatase (CYP19A1) OTZ6XF74 CP19A_HUMAN Decreases Activity [23]
Tyrosine-protein kinase JAK2 (JAK2) OTBIDOOR JAK2_HUMAN Increases Expression [24]
Tumor necrosis factor (TNF) OT4IE164 TNFA_HUMAN Decreases Expression [24]
Interleukin-1 beta (IL1B) OT0DWXXB IL1B_HUMAN Affects Expression [24]
Platelet basic protein (PPBP) OT1FHGQS CXCL7_HUMAN Decreases Expression [25]
Platelet factor 4 (PF4) OTEMJU68 PLF4_HUMAN Decreases Expression [25]
Transcription factor AP-2-alpha (TFAP2A) OTMYT3NK AP2A_HUMAN Increases Expression [26]
Interleukin-10 (IL10) OTIRFRXC IL10_HUMAN Increases Expression [24]
Interleukin-17A (IL17A) OTY72FT2 IL17_HUMAN Decreases Expression [24]
ATP-binding cassette sub-family C member 2 (ABCC2) OTJSIGV5 MRP2_HUMAN Increases Expression [27]
Neural cell adhesion molecule L1-like protein (CHL1) OT6E6E8P NCHL1_HUMAN Affects Response To Substance [28]
5-hydroxytryptamine receptor 2A (HTR2A) OTWXJX0M 5HT2A_HUMAN Affects Response To Substance [29]
------------------------------------------------------------------------------------
⏷ Show the Full List of 17 DOT(s)

References

1 ClinicalTrials.gov (NCT00292370) Quetiapine Augmentation for Treatment-resistant PTSD
2 Quetiapine FDA Label
3 The pipeline and future of drug development in schizophrenia. Mol Psychiatry. 2007 Oct;12(10):904-22.
4 ClinicalTrials.gov (NCT02362412) Study to Evaluate the Effects of Switching Different Strength Forms of FK949E in Bipolar Disorder Patients With Major Depressive Episodes. U.S. National Institutes ofHealth.
5 Paroxetine FDA Label
6 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 4790).
7 Receptor reserve-dependent properties of antipsychotics at human dopamine D2 receptors. Eur J Pharmacol. 2009 Apr 1;607(1-3):35-40.
8 Identification of P-glycoprotein substrates and inhibitors among psychoactive compounds--implications for pharmacokinetics of selected substrates. J Pharm Pharmacol. 2004 Aug;56(8):967-75.
9 Genome-wide association study of antipsychotic-induced QTc interval prolongation. Pharmacogenomics J. 2012 Apr;12(2):165-72.
10 Metabolism of the active metabolite of quetiapine, N-desalkylquetiapine in vitro. Drug Metab Dispos. 2012 Sep;40(9):1778-84.
11 A liquid chromatographic-electrospray-tandem mass spectrometric method for quantitation of quetiapine in human plasma and liver microsomes: application to study in vitro metabolism. J Anal Toxicol. 2004 Sep;28(6):443-8.
12 Influence of ABCB1 and CYP3A5 genetic polymorphisms on the pharmacokinetics of quetiapine in healthy volunteers. Pharmacogenet Genomics. 2014 Jan;24(1):35-42.
13 Drugs@FDA. U.S. Food and Drug Administration. U.S. Department of Health & Human Services.
14 Improving the prediction of the brain disposition for orally administered drugs using BDDCS. Adv Drug Deliv Rev. 2012 Jan;64(1):95-109.
15 New orally active anticoagulant agents for the prevention and treatment of venous thromboembolism in cancer patients. Ther Clin Risk Manag. 2014 Jun 13;10:423-36.
16 CYP1A2 genetic polymorphisms are associated with treatment response to the antidepressant paroxetine. Pharmacogenomics. 2010 Nov;11(11):1535-43.
17 Clinical pharmacogenetics implementation consortium (CPIC) guideline for CYP2D6 and CYP2C19 genotypes and dosing of selective serotonin reuptake inhibitors. Clin Pharmacol Ther. 2015 Aug;98(2):127-34.
18 Identification of cytochrome P450 isoforms involved in the metabolism of paroxetine and estimation of their importance for human paroxetine metabolism using a population-based simulator. Drug Metab Dispos. 2010 Mar;38(3):376-85.
19 ABCB1 (MDR1) gene polymorphisms are associated with the clinical response to paroxetine in patients with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2008 Feb 15;32(2):398-404. doi: 10.1016/j.pnpbp.2007.09.003. Epub 2007 Sep 15.
20 Serotonin transporter mRNA expression in peripheral leukocytes of patients with major depression before and after treatment with paroxetine. Neurosci Lett. 2005 Nov 25;389(1):12-6. doi: 10.1016/j.neulet.2005.06.048.
21 Immunomodulatory effect of selective serotonin reuptake inhibitors (SSRIs) on human T lymphocyte function and gene expression. Eur Neuropsychopharmacol. 2007 Dec;17(12):774-80.
22 Direct and metabolism-dependent cytochrome P450 inhibition assays for evaluating drug-drug interactions. J Appl Toxicol. 2013 Feb;33(2):100-8.
23 Effects of selective serotonin reuptake inhibitors on three sex steroids in two versions of the aromatase enzyme inhibition assay and in the H295R cell assay. Toxicol In Vitro. 2015 Oct;29(7):1729-35.
24 Paroxetine modulates immune responses by activating a JAK2/STAT3 signaling pathway. J Biochem Mol Toxicol. 2020 May;34(5):e22464. doi: 10.1002/jbt.22464. Epub 2020 Feb 5.
25 Evaluation of platelet activation in depressed patients with ischemic heart disease after paroxetine or nortriptyline treatment. J Clin Psychopharmacol. 2000 Apr;20(2):137-40. doi: 10.1097/00004714-200004000-00004.
26 Impact of selective serotonin reuptake inhibitors on neural crest stem cell formation. Toxicol Lett. 2017 Nov 5;281:20-25. doi: 10.1016/j.toxlet.2017.08.012. Epub 2017 Aug 24.
27 Antidepressant induced cholestasis: hepatocellular redistribution of multidrug resistant protein (MRP2). Gut. 2003 Feb;52(2):300-3. doi: 10.1136/gut.52.2.300.
28 Genome-wide expression profiling of human lymphoblastoid cell lines identifies CHL1 as a putative SSRI antidepressant response biomarker. Pharmacogenomics. 2011 Feb;12(2):171-84. doi: 10.2217/pgs.10.185.
29 Prediction of response to paroxetine and venlafaxine by serotonin-related genes in obsessive-compulsive disorder in a randomized, double-blind trial. J Clin Psychiatry. 2007 May;68(5):747-53. doi: 10.4088/jcp.v68n0512.