General Information of Drug Combination (ID: DCPW3LF)

Drug Combination Name
Ramelteon Epinephrine
Indication
Disease Entry Status REF
Chronic myelogenous leukemia Investigative [1]
Component Drugs Ramelteon   DM7IW9J Epinephrine   DM3KJBC
Small molecular drug Small molecular drug
2D MOL 2D MOL
3D MOL 3D MOL
High-throughput Screening Result Testing Cell Line: KBM-7
Zero Interaction Potency (ZIP) Score: 5.03
Bliss Independence Score: 5.03
Loewe Additivity Score: 6.47
LHighest Single Agent (HSA) Score: 6.47

Molecular Interaction Atlas of This Drug Combination

Molecular Interaction Atlas (MIA)
Indication(s) of Ramelteon
Disease Entry ICD 11 Status REF
Insomnia 7A00-7A0Z Approved [2]
Circadian rhythm sleep disorder 7A60-7A65 Terminated [2]
Ramelteon Interacts with 2 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Melatonin receptor type 1B (MTNR1B) TT32JK8 MTR1B_HUMAN Modulator [6]
Melatonin receptor type 1A (MTNR1A) TT0WAIE MTR1A_HUMAN Modulator [6]
------------------------------------------------------------------------------------
Ramelteon Interacts with 3 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [7]
Cytochrome P450 1A2 (CYP1A2) DEJGDUW CP1A2_HUMAN Metabolism [7]
Mephenytoin 4-hydroxylase (CYP2C19) DEGTFWK CP2CJ_HUMAN Metabolism [8]
------------------------------------------------------------------------------------
Ramelteon Interacts with 8 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Retinal dehydrogenase 2 (ALDH1A2) OTJB560Z AL1A2_HUMAN Decreases Expression [5]
Homeobox protein Hox-B7 (HOXB7) OTC7WYU8 HXB7_HUMAN Increases Expression [5]
Paired box protein Pax-6 (PAX6) OTOC9876 PAX6_HUMAN Decreases Expression [5]
Homeobox protein MOX-1 (MEOX1) OTJEMT2D MEOX1_HUMAN Decreases Expression [5]
Fibroblast growth factor 8 (FGF8) OTFU0IUW FGF8_HUMAN Decreases Expression [5]
Mesoderm posterior protein 2 (MESP2) OT7H4LYA MESP2_HUMAN Increases Expression [5]
Oligodendrocyte transcription factor 3 (OLIG3) OTU8XLAF OLIG3_HUMAN Decreases Expression [5]
Eyes absent homolog 1 (EYA1) OTHU807A EYA1_HUMAN Decreases Expression [5]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 DOT(s)
Indication(s) of Epinephrine
Disease Entry ICD 11 Status REF
Acute asthma CA23 Approved [3]
Allergy 4A80-4A85 Approved [4]
Anaphylaxis N.A. Approved [3]
Bronchiectasis CA24 Approved [3]
Bronchitis CA20 Approved [3]
Periodontitis DA0C Approved [3]
Pulmonary emphysema CA21.Z Approved [3]
Severe asthma CA23 Approved [3]
Asthma CA23 Investigative [3]
Epinephrine Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Adrenergic receptor beta-1 (ADRB1) TTR6W5O ADRB1_HUMAN Agonist [9]
------------------------------------------------------------------------------------
Epinephrine Interacts with 2 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
Organic cation transporter 3 (SLC22A3) DT6201N S22A3_HUMAN Substrate [10]
Organic cation transporter 1 (SLC22A1) DTT79CX S22A1_HUMAN Substrate [11]
------------------------------------------------------------------------------------
Epinephrine Interacts with 5 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
UDP-glucuronosyltransferase 1A1 (UGT1A1) DEYGVN4 UD11_HUMAN Metabolism [12]
Sulfotransferase 1A1 (SULT1A1) DEYWLRK ST1A1_HUMAN Metabolism [13]
Thiopurine methyltransferase (TPMT) DEFQ8VO TPMT_HUMAN Metabolism [14]
Catechol O-methyltransferase (COMT) DEV3T4A COMT_HUMAN Metabolism [15]
Monoamine oxidase type A (MAO-A) DERE4TU AOFA_HUMAN Metabolism [16]
------------------------------------------------------------------------------------
Epinephrine Interacts with 33 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Catechol O-methyltransferase (COMT) OTPWKTQG COMT_HUMAN Increases Methylation [17]
Solute carrier family 22 member 3 (SLC22A3) OTQYGVXX S22A3_HUMAN Increases Uptake [18]
Superoxide dismutase (SOD1) OT39TA1L SODC_HUMAN Increases Expression [19]
Superoxide dismutase , mitochondrial (SOD2) OTIWXGZ9 SODM_HUMAN Increases Expression [19]
Carbonic anhydrase 2 (CA2) OTJRMUAG CAH2_HUMAN Increases Expression [20]
Integrin alpha-V (ITGAV) OTAM7JTR ITAV_HUMAN Increases Expression [20]
Cathepsin K (CTSK) OTT3YX5O CATK_HUMAN Increases Expression [20]
Renin (REN) OT52GZR2 RENI_HUMAN Increases Activity [21]
Insulin (INS) OTZ85PDU INS_HUMAN Decreases Expression [22]
Beta-2 adrenergic receptor (ADRB2) OTSDOX4Q ADRB2_HUMAN Increases Activity [23]
Poly polymerase 1 (PARP1) OT310QSG PARP1_HUMAN Decreases Cleavage [24]
Apoptosis regulator Bcl-2 (BCL2) OT9DVHC0 BCL2_HUMAN Increases Expression [24]
Proliferating cell nuclear antigen (PCNA) OTHZ1RIA PCNA_HUMAN Increases Expression [24]
Pyruvate kinase PKM (PKM) OTLHHMC2 KPYM_HUMAN Increases Expression [24]
Alpha-1D adrenergic receptor (ADRA1D) OTW2CD1O ADA1D_HUMAN Increases Activity [25]
Tumor necrosis factor receptor superfamily member 6 (FAS) OTP9XG86 TNR6_HUMAN Increases Expression [26]
Alpha-1A adrenergic receptor (ADRA1A) OTUIWCL5 ADA1A_HUMAN Increases Activity [25]
Alpha-1B adrenergic receptor (ADRA1B) OTSAYAFD ADA1B_HUMAN Increases Activity [25]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Increases Activity [26]
Tumor necrosis factor ligand superfamily member 6 (FASLG) OTZARCHH TNFL6_HUMAN Increases Expression [26]
Hexokinase-2 (HK2) OTC0GCQO HXK2_HUMAN Increases Expression [24]
Ephrin type-A receptor 4 (EPHA4) OT3AMK0C EPHA4_HUMAN Increases Phosphorylation [27]
Hormone-sensitive lipase (LIPE) OTMMVJ8A LIPS_HUMAN Increases Activity [28]
Hypoxia-inducible factor 1-alpha (HIF1A) OTADSC03 HIF1A_HUMAN Increases Expression [24]
P2X purinoceptor 7 (P2RX7) OTNJ9XPL P2RX7_HUMAN Decreases Activity [29]
Leptin (LEP) OT5Q7ODW LEP_HUMAN Increases ADR [30]
Catalase (CAT) OTHEBX9R CATA_HUMAN Decreases Response To Substance [31]
Sulfotransferase 1A3 (SULT1A4) OTHJ8WWV ST1A3_HUMAN Increases Sulfation [32]
Glutathione reductase, mitochondrial (GSR) OTM2TUYM GSHR_HUMAN Increases ADR [30]
Neuron-specific vesicular protein calcyon (CALY) OTQ7EMPU CALY_HUMAN Decreases Secretion [33]
Interleukin-8 (CXCL8) OTS7T5VH IL8_HUMAN Increases ADR [30]
Equilibrative nucleoside transporter 4 (SLC29A4) OTWTZXMX S29A4_HUMAN Increases Uptake [18]
Alpha-2A adrenergic receptor (ADRA2A) OTZFGOTP ADA2A_HUMAN Increases ADR [30]
------------------------------------------------------------------------------------
⏷ Show the Full List of 33 DOT(s)

References

1 Recurrent recessive mutation in deoxyguanosine kinase causes idiopathic noncirrhotic portal hypertension.Hepatology. 2016 Jun;63(6):1977-86. doi: 10.1002/hep.28499. Epub 2016 Mar 31.
2 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 1356).
3 Epinephrine FDA Label
4 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 509).
5 Exposure-based assessment of chemical teratogenicity using morphogenetic aggregates of human embryonic stem cells. Reprod Toxicol. 2020 Jan;91:74-91. doi: 10.1016/j.reprotox.2019.10.004. Epub 2019 Nov 8.
6 MT1 and MT2 melatonin receptors: ligands, models, oligomers, and therapeutic potential. J Med Chem. 2014 Apr 24;57(8):3161-85.
7 Metabolism of ramelteon in human liver microsomes and correlation with the effect of fluvoxamine on ramelteon pharmacokinetics. Drug Metab Dispos. 2010 Aug;38(8):1381-91.
8 Pharmacotherapy of insomnia with ramelteon: safety, efficacy and clinical applications. J Cent Nerv Syst Dis. 2011 Apr 12;3:51-65.
9 Adrenergic activation of electrogenic K+ secretion in guinea pig distal colonic epithelium: involvement of beta1- and beta2-adrenergic receptors. Am J Physiol Gastrointest Liver Physiol. 2009 Aug;297(2):G269-77.
10 Differential pharmacological in vitro properties of organic cation transporters and regional distribution in rat brain. Neuropharmacology. 2006 Jun;50(8):941-52.
11 Human intestinal transporter database: QSAR modeling and virtual profiling of drug uptake, efflux and interactions. Pharm Res. 2013 Apr;30(4):996-1007.
12 Steroid glucuronides: human circulatory levels and formation by LNCaP cells. J Steroid Biochem Mol Biol. 1991;40(4-6):593-8.
13 Crystal structure of human sulfotransferase SULT1A3 in complex with dopamine and 3'-phosphoadenosine 5'-phosphate. Biochem Biophys Res Commun. 2005 Sep 23;335(2):417-23.
14 Adrenal catecholamines and their metabolism in the vitamin A deficient rat. Ann Nutr Metab. 1983;27(3):220-7.
15 Different metabolism of norepinephrine and epinephrine by catechol-O-methyltransferase and monoamine oxidase in rats. J Pharmacol Exp Ther. 1994 Mar;268(3):1242-51.
16 Role of monoamine-oxidase-A-gene variation in the development of glioblastoma in males: a case control study. J Neurooncol. 2019 Nov;145(2):287-294.
17 Molecular mechanisms controlling the rate and specificity of catechol O-methylation by human soluble catechol O-methyltransferase. Mol Pharmacol. 2001 Feb;59(2):393-402. doi: 10.1124/mol.59.2.393.
18 Selective transport of monoamine neurotransmitters by human plasma membrane monoamine transporter and organic cation transporter 3. J Pharmacol Exp Ther. 2010 Dec;335(3):743-53. doi: 10.1124/jpet.110.170142. Epub 2010 Sep 21.
19 Epinephrine upregulates superoxide dismutase in human coronary artery endothelial cells. Free Radic Biol Med. 2001 Jan 15;30(2):148-53.
20 Effects of beta-adrenergic agonists on bone-resorbing activity in human osteoclast-like cells. Biochim Biophys Acta. 2003 May 12;1640(2-3):137-42.
21 Hypokalemia from beta2-receptor stimulation by circulating epinephrine. N Engl J Med. 1983 Dec 8;309(23):1414-9. doi: 10.1056/NEJM198312083092303.
22 A receptor mechanism for the inhibition of insulin release by epinephrine in man. J Clin Invest. 1967 Jan;46(1):86-94. doi: 10.1172/JCI105514.
23 Myocardial ischaemia and ventricular arrhthymias precipitated by physiological concentrations of adrenaline in patients with coronary artery disease. Br Heart J. 1992 May;67(5):419-20. doi: 10.1136/hrt.67.5.419-b.
24 Epinephrine facilitates the growth of T cell lymphoma by altering cell proliferation, apoptosis, and glucose metabolism. Chem Biol Interact. 2023 Jan 5;369:110278. doi: 10.1016/j.cbi.2022.110278. Epub 2022 Nov 22.
25 Carvedilol selectively inhibits oscillatory intracellular calcium changes evoked by human alpha1D- and alpha1B-adrenergic receptors. Cardiovasc Res. 2004 Sep 1;63(4):662-72. doi: 10.1016/j.cardiores.2004.05.014.
26 Carvedilol prevents epinephrine-induced apoptosis in human coronary artery endothelial cells: modulation of Fas/Fas ligand and caspase-3 pathway. Cardiovasc Res. 2000 Feb;45(3):788-94. doi: 10.1016/s0008-6363(99)00369-7.
27 The platelet P2Y12 receptor contributes to granule secretion through Ephrin A4 receptor. Platelets. 2012;23(8):617-25. doi: 10.3109/09537104.2011.645924. Epub 2012 Jan 24.
28 Hormone-sensitive lipase in human adipose tissue, isolated adipocytes, and cultured adipocytes. Pediatr Res. 1982 Dec;16(12):982-8. doi: 10.1203/00006450-198212000-00002.
29 Epidermal growth factor facilitates epinephrine inhibition of P2X7-receptor-mediated pore formation and apoptosis: a novel signaling network. Endocrinology. 2005 Jan;146(1):164-74. doi: 10.1210/en.2004-1026. Epub 2004 Sep 30.
30 ADReCS-Target: target profiles for aiding drug safety research and application. Nucleic Acids Res. 2018 Jan 4;46(D1):D911-D917. doi: 10.1093/nar/gkx899.
31 Evaluation of cytogenetic and DNA damage in human lymphocytes treated with adrenaline in vitro. Toxicol In Vitro. 2015 Feb;29(1):27-33. doi: 10.1016/j.tiv.2014.08.001. Epub 2014 Aug 27.
32 Enzymatic characterization and interspecies difference of phenol sulfotransferases, ST1A forms. Drug Metab Dispos. 2001 Mar;29(3):274-81.
33 Increased arterial pressure in mice with overexpression of the ADHD candidate gene calcyon in forebrain. PLoS One. 2019 Feb 12;14(2):e0211903. doi: 10.1371/journal.pone.0211903. eCollection 2019.