General Information of Drug Off-Target (DOT) (ID: OT47KUOO)

DOT Name Protein kish-A (TMEM167A)
Synonyms Transmembrane protein 167; Transmembrane protein 167A
Gene Name TMEM167A
Related Disease
Neonatal diabetes mellitus ( )
UniProt ID
KISHA_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF06842
Sequence
MSAIFNFQSLLTVILLLICTCAYIRSLAPSLLDRNKTGLLGIFWKCARIGERKSPYVAVC
CIVMAFSILFIQ
Function Involved in the early part of the secretory pathway.

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Neonatal diabetes mellitus DISFHF9K Limited Autosomal recessive [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
8 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Protein kish-A (TMEM167A). [2]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Protein kish-A (TMEM167A). [3]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Protein kish-A (TMEM167A). [4]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Protein kish-A (TMEM167A). [5]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Protein kish-A (TMEM167A). [6]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Protein kish-A (TMEM167A). [7]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Protein kish-A (TMEM167A). [8]
Deguelin DMXT7WG Investigative Deguelin decreases the expression of Protein kish-A (TMEM167A). [9]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Drug(s)

References

1 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
2 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
3 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
4 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
5 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
6 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
7 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
8 Genome-wide transcriptional and functional analysis of human T lymphocytes treated with benzo[alpha]pyrene. Int J Mol Sci. 2018 Nov 17;19(11).
9 Neurotoxicity and underlying cellular changes of 21 mitochondrial respiratory chain inhibitors. Arch Toxicol. 2021 Feb;95(2):591-615. doi: 10.1007/s00204-020-02970-5. Epub 2021 Jan 29.