General Information of Drug Off-Target (DOT) (ID: OT7HVXRL)

DOT Name Peroxisomal N(1)-acetyl-spermine/spermidine oxidase (PAOX)
Synonyms EC 1.5.3.13; Polyamine oxidase
Gene Name PAOX
UniProt ID
PAOX_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
1.5.3.13
Pfam ID
PF01593
Sequence
MESTGSVGEAPGGPRVLVVGGGIAGLGAAQRLCGHSAFPHLRVLEATARAGGRIRSERCF
GGVVEVGAHWIHGPSRGNPVFQLAAEYGLLGEKELSQENQLVETGGHVGLPSVSYASSGA
SVSLQLVAEMATLFYGLIDQTREFLHAAETPVPSVGEYLKKEIGQHVAGWTEDEETRKLK
LAVLNSFFNLECCVSGTHSMDLVALAPFGEYTVLPGLDCTFSKGYQGLTNCMMAALPEDT
VVFEKPVKTIHWNGSFQEAAFPGETFPVSVECEDGDRFPAHHVIVTVPLGFLREHLDTFF
DPPLPAEKAEAIRKIGFGTNNKIFLEFEEPFWEPDCQLIQLVWEDTSPLEDAAPELQDAW
FRKLIGFVVLPAFASVHVLCGFIAGLESEFMETLSDEEVLLCLTQVLRRVTGNPRLPAPK
SVLRSRWHSAPYTRGSYSYVAVGSTGGDLDLLAQPLPADGAGAQLQILFAGEATHRTFYS
TTHGALLSGWREADRLLSLWAPQVQQPRPRL
Function
Flavoenzyme which catalyzes the oxidation of N(1)-acetylspermine to spermidine and is thus involved in the polyamine back-conversion. Can also oxidize N(1)-acetylspermidine to putrescine. Substrate specificity: N(1)-acetylspermine = N(1)-acetylspermidine > N(1),N(12)-diacylspermine >> spermine. Does not oxidize spermidine. Plays an important role in the regulation of polyamine intracellular concentration and has the potential to act as a determinant of cellular sensitivity to the antitumor polyamine analogs.
Tissue Specificity Widely expressed. Not detected in spleen. Expressed at lower level in neoplastic tissues.
KEGG Pathway
Peroxisome (hsa04146 )
Reactome Pathway
Interconversion of polyamines (R-HSA-351200 )
Peroxisomal protein import (R-HSA-9033241 )
PAOs oxidise polyamines to amines (R-HSA-141334 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Peroxisomal N(1)-acetyl-spermine/spermidine oxidase (PAOX). [1]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Peroxisomal N(1)-acetyl-spermine/spermidine oxidase (PAOX). [3]
------------------------------------------------------------------------------------
9 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Peroxisomal N(1)-acetyl-spermine/spermidine oxidase (PAOX). [2]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Peroxisomal N(1)-acetyl-spermine/spermidine oxidase (PAOX). [4]
Testosterone DM7HUNW Approved Testosterone decreases the expression of Peroxisomal N(1)-acetyl-spermine/spermidine oxidase (PAOX). [5]
Folic acid DMEMBJC Approved Folic acid decreases the expression of Peroxisomal N(1)-acetyl-spermine/spermidine oxidase (PAOX). [6]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Peroxisomal N(1)-acetyl-spermine/spermidine oxidase (PAOX). [7]
GSK2110183 DMZHB37 Phase 2 GSK2110183 increases the expression of Peroxisomal N(1)-acetyl-spermine/spermidine oxidase (PAOX). [8]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Peroxisomal N(1)-acetyl-spermine/spermidine oxidase (PAOX). [9]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Peroxisomal N(1)-acetyl-spermine/spermidine oxidase (PAOX). [10]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of Peroxisomal N(1)-acetyl-spermine/spermidine oxidase (PAOX). [11]
------------------------------------------------------------------------------------
⏷ Show the Full List of 9 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
4 Arsenic suppresses gene expression in promyelocytic leukemia cells partly through Sp1 oxidation. Blood. 2005 Jul 1;106(1):304-10.
5 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384. doi: 10.1016/j.taap.2020.115384. Epub 2020 Dec 25.
6 Folic acid supplementation dysregulates gene expression in lymphoblastoid cells--implications in nutrition. Biochem Biophys Res Commun. 2011 Sep 9;412(4):688-92. doi: 10.1016/j.bbrc.2011.08.027. Epub 2011 Aug 16.
7 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
8 Novel ATP-competitive Akt inhibitor afuresertib suppresses the proliferation of malignant pleural mesothelioma cells. Cancer Med. 2017 Nov;6(11):2646-2659. doi: 10.1002/cam4.1179. Epub 2017 Sep 27.
9 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297. doi: 10.1016/j.fct.2020.111297. Epub 2020 Mar 28.
10 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
11 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.