General Information of Drug Off-Target (DOT) (ID: OT8GG1IK)

DOT Name Protein phosphatase 1 regulatory subunit 35 (PPP1R35)
Gene Name PPP1R35
UniProt ID
PPR35_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF15503
Sequence
MMMGCGESELKSADGEEAAAVPGPPPEPQVPQLRAPVPEPGLDLSLSPRPDSPQPRHGSP
GRRKGRAERRGAARQRRQVRFRLTPPSPVRSEPQPAVPQELEMPVLKSSLALGLELRAAA
GSHFDAAKAVEEQLRKSFQIRCGLEESVSEGLNVPRSKRLFRDLVSLQVPEEQVLNAALR
EKLALLPPQARAPHPKEPPGPGPDMTILCDPETLFYESPHLTLDGLPPLRLQLRPRPSED
TFLMHRTLRRWEA
Function
During centriole duplication, plays a role in the centriole elongation by promoting the recruitment of the microtubule-binding elongation machinery through its interaction with RTTN, leading to the centriole to centrosome conversion. In addition, may play a role in the primary cilia assembly.

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
7 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Protein phosphatase 1 regulatory subunit 35 (PPP1R35). [1]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Protein phosphatase 1 regulatory subunit 35 (PPP1R35). [2]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Protein phosphatase 1 regulatory subunit 35 (PPP1R35). [3]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Protein phosphatase 1 regulatory subunit 35 (PPP1R35). [4]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Protein phosphatase 1 regulatory subunit 35 (PPP1R35). [5]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Protein phosphatase 1 regulatory subunit 35 (PPP1R35). [6]
Bisphenol A DM2ZLD7 Investigative Bisphenol A affects the expression of Protein phosphatase 1 regulatory subunit 35 (PPP1R35). [7]
------------------------------------------------------------------------------------
⏷ Show the Full List of 7 Drug(s)

References

1 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
2 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
3 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
4 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
5 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
6 Bromodomain-containing protein 4 (BRD4) regulates RNA polymerase II serine 2 phosphorylation in human CD4+ T cells. J Biol Chem. 2012 Dec 14;287(51):43137-55.
7 Comprehensive analysis of transcriptomic changes induced by low and high doses of bisphenol A in HepG2 spheroids in vitro and rat liver in vivo. Environ Res. 2019 Jun;173:124-134. doi: 10.1016/j.envres.2019.03.035. Epub 2019 Mar 18.