General Information of Drug Off-Target (DOT) (ID: OTDMVZD6)

DOT Name Porimin (TMEM123)
Synonyms Keratinocytes-associated transmembrane protein 3; KCT-3; Pro-oncosis receptor inducing membrane injury; Transmembrane protein 123
Gene Name TMEM123
UniProt ID
PORIM_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF05283
Sequence
MGLGARGAWAALLLGTLQVLALLGAAHESAAMAASANIENSGLPHNSSANSTETLQHVPS
DHTNETSNSTVKPPTSVASDSSNTTVTTMKPTAASNTTTPGMVSTNMTSTTLKSTPKTTS
VSQNTSQISTSTMTVTHNSSVTSAASSVTITTTMHSEAKKGSKFDTGSFVGGIVLTLGVL
SILYIGCKMYYSRRGIRYRTIDEHDAII
Function Implicated in oncotic cell death, characterized by cell swelling, organelle swelling, vacuolization and increased membrane permeability.
Tissue Specificity Ubiquitous. Not expressed in ovary. Expressed in keratinocytes.

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
9 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Porimin (TMEM123). [1]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Porimin (TMEM123). [2]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Porimin (TMEM123). [3]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Porimin (TMEM123). [4]
Irinotecan DMP6SC2 Approved Irinotecan decreases the expression of Porimin (TMEM123). [5]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Porimin (TMEM123). [6]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Porimin (TMEM123). [7]
Bisphenol A DM2ZLD7 Investigative Bisphenol A affects the expression of Porimin (TMEM123). [8]
chloropicrin DMSGBQA Investigative chloropicrin decreases the expression of Porimin (TMEM123). [9]
------------------------------------------------------------------------------------
⏷ Show the Full List of 9 Drug(s)

References

1 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
2 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
3 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
4 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
5 Clinical determinants of response to irinotecan-based therapy derived from cell line models. Clin Cancer Res. 2008 Oct 15;14(20):6647-55.
6 Transcriptional signature of human macrophages exposed to the environmental contaminant benzo(a)pyrene. Toxicol Sci. 2010 Apr;114(2):247-59.
7 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
8 Comprehensive analysis of transcriptomic changes induced by low and high doses of bisphenol A in HepG2 spheroids in vitro and rat liver in vivo. Environ Res. 2019 Jun;173:124-134. doi: 10.1016/j.envres.2019.03.035. Epub 2019 Mar 18.
9 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.