1 |
Mutations in GDP-mannose pyrophosphorylase B cause congenital and limb-girdle muscular dystrophies associated with hypoglycosylation of -dystroglycan. Am J Hum Genet. 2013 Jul 11;93(1):29-41. doi: 10.1016/j.ajhg.2013.05.009. Epub 2013 Jun 13.
|
2 |
Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
|
3 |
PanelApp crowdsources expert knowledge to establish consensus diagnostic gene panels. Nat Genet. 2019 Nov;51(11):1560-1565. doi: 10.1038/s41588-019-0528-2.
|
4 |
A homozygous mutation in GMPPB leads to centronuclear myopathy with combined pre- and postsynaptic defects of neuromuscular transmission.Neuromuscul Disord. 2019 Aug;29(8):614-617. doi: 10.1016/j.nmd.2019.07.001. Epub 2019 Jul 5.
|
5 |
The Gene Curation Coalition: A global effort to harmonize gene-disease evidence resources. Genet Med. 2022 Aug;24(8):1732-1742. doi: 10.1016/j.gim.2022.04.017. Epub 2022 May 4.
|
6 |
Novel mutations in the C-terminal region of GMPPB causing limb-girdle muscular dystrophy overlapping with congenital myasthenic syndrome.Neuromuscul Disord. 2017 Jun;27(6):557-564. doi: 10.1016/j.nmd.2017.03.004. Epub 2017 Mar 10.
|
7 |
Mutations in GMPPB cause congenital myasthenic syndrome and bridge myasthenic disorders with dystroglycanopathies. Brain. 2015 Sep;138(Pt 9):2493-504. doi: 10.1093/brain/awv185. Epub 2015 Jun 30.
|
8 |
Late-onset limb-girdle muscular dystrophy caused by GMPPB mutations.Neuromuscul Disord. 2017 Jul;27(7):627-630. doi: 10.1016/j.nmd.2017.04.006. Epub 2017 Apr 18.
|
9 |
Broad phenotypic spectrum and genotype-phenotype correlations in GMPPB-related dystroglycanopathies: an Italian cross-sectional study.Orphanet J Rare Dis. 2018 Sep 26;13(1):170. doi: 10.1186/s13023-018-0863-x.
|
10 |
Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
|
11 |
Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
|
12 |
Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
|
13 |
Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
|
14 |
Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
|
15 |
LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4179-E4188.
|
16 |
New insights into BaP-induced toxicity: role of major metabolites in transcriptomics and contribution to hepatocarcinogenesis. Arch Toxicol. 2016 Jun;90(6):1449-58.
|
17 |
Environmental pollutant induced cellular injury is reflected in exosomes from placental explants. Placenta. 2020 Jan 1;89:42-49. doi: 10.1016/j.placenta.2019.10.008. Epub 2019 Oct 17.
|
18 |
Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
|
|
|
|
|
|
|