General Information of Drug Off-Target (DOT) (ID: OTMVJ0GA)

DOT Name Putative divalent cation/proton antiporter TMEM165 (TMEM165)
Synonyms Transmembrane protein 165; Transmembrane protein PT27; Transmembrane protein TPARL
Gene Name TMEM165
Related Disease
Amelogenesis imperfecta ( )
TMEM165-congenital disorder of glycosylation ( )
Bone development disease ( )
Advanced cancer ( )
Hepatocellular carcinoma ( )
UniProt ID
TM165_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF01169
Sequence
MAAAAPGNGRASAPRLLLLFLVPLLWAPAAVRAGPDEDLSHRNKEPPAPAQQLQPQPVAV
QGPEPARVEKIFTPAAPVHTNKEDPATQTNLGFIHAFVAAISVIIVSELGDKTFFIAAIM
AMRYNRLTVLAGAMLALGLMTCLSVLFGYATTVIPRVYTYYVSTVLFAIFGIRMLREGLK
MSPDEGQEELEEVQAELKKKDEEFQRTKLLNGPGDVETGTSITVPQKKWLHFISPIFVQA
LTLTFLAEWGDRSQLTTIVLAAREDPYGVAVGGTVGHCLCTGLAVIGGRMIAQKISVRTV
TIIGGIVFLAFAFSALFISPDSGF
Function
Putative divalent cation:proton antiporter that exchanges calcium or manganese ions for protons across the Golgi membrane. Mediates the reversible transport of calcium or manganese to the Golgi lumen driven by the proton gradient and possibly the membrane potential generated by V-ATPase. Provides calcium or manganese cofactors to resident Golgi enzymes and contributes to the maintenance of an acidic luminal Golgi pH required for proper functioning of the secretory pathway. Promotes Ca(2+) storage within the Golgi lumen of the mammary epithelial cells to be then secreted into milk. The transport mechanism and stoichiometry remains to be elucidated.
Tissue Specificity Ubiquitously expressed.

Molecular Interaction Atlas (MIA) of This DOT

5 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Amelogenesis imperfecta DISGYR9E Definitive Biomarker [1]
TMEM165-congenital disorder of glycosylation DISPHFU3 Definitive Autosomal recessive [1]
Bone development disease DISVKAZS moderate Biomarker [2]
Advanced cancer DISAT1Z9 Limited Biomarker [3]
Hepatocellular carcinoma DIS0J828 Limited Altered Expression [3]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
7 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Putative divalent cation/proton antiporter TMEM165 (TMEM165). [4]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Putative divalent cation/proton antiporter TMEM165 (TMEM165). [5]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Putative divalent cation/proton antiporter TMEM165 (TMEM165). [6]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Putative divalent cation/proton antiporter TMEM165 (TMEM165). [7]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Putative divalent cation/proton antiporter TMEM165 (TMEM165). [8]
Torcetrapib DMDHYM7 Discontinued in Phase 2 Torcetrapib increases the expression of Putative divalent cation/proton antiporter TMEM165 (TMEM165). [9]
Nickel chloride DMI12Y8 Investigative Nickel chloride decreases the expression of Putative divalent cation/proton antiporter TMEM165 (TMEM165). [10]
------------------------------------------------------------------------------------
⏷ Show the Full List of 7 Drug(s)

References

1 TMEM165 deficiency causes a congenital disorder of glycosylation. Am J Hum Genet. 2012 Jul 13;91(1):15-26. doi: 10.1016/j.ajhg.2012.05.002. Epub 2012 Jun 7.
2 Abnormal cartilage development and altered N-glycosylation in Tmem165-deficient zebrafish mirrors the phenotypes associated with TMEM165-CDG.Glycobiology. 2015 Jun;25(6):669-82. doi: 10.1093/glycob/cwv009. Epub 2015 Jan 21.
3 TMEM165, a Golgi transmembrane protein, is a novel marker for hepatocellular carcinoma and its depletion impairs invasion activity.Oncol Rep. 2018 Sep;40(3):1297-1306. doi: 10.3892/or.2018.6565. Epub 2018 Jul 12.
4 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
5 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
6 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
7 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
8 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
9 Clarifying off-target effects for torcetrapib using network pharmacology and reverse docking approach. BMC Syst Biol. 2012 Dec 10;6:152.
10 The contact allergen nickel triggers a unique inflammatory and proangiogenic gene expression pattern via activation of NF-kappaB and hypoxia-inducible factor-1alpha. J Immunol. 2007 Mar 1;178(5):3198-207.