General Information of Drug Off-Target (DOT) (ID: OTN38YBY)

DOT Name Aspartate dehydrogenase domain-containing protein (ASPDH)
Gene Name ASPDH
UniProt ID
ASPDH_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF01958 ; PF03447
Sequence
MADRGPWRVGVVGYGRLGQSLVSRLLAQGPELGLELVFVWNRDPGRMAGSVPPSLQLQNL
AALGERRPDLVVEVAHPKIIHESGAQILRHANLLVGSPSALSDQTTERQLLEASQHWDHA
VFVARGALWGAEDIRRLDAAGGLRSLRVTMATHPDGFRLEGPLAAAHSPGPCTVLYEGPV
RGLCPFAPRNSNTMAAAALAAPSLGFDGVIGVLVADTSLTDMHVVDVELSGPRGPTGRSF
AVHTRRENPAEPGAVTGSATVTAFWQSLLACCQLPSRPGIHLC
KEGG Pathway
Nicoti.te and nicoti.mide metabolism (hsa00760 )
Metabolic pathways (hsa01100 )
Biosynthesis of cofactors (hsa01240 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Aspartate dehydrogenase domain-containing protein (ASPDH). [1]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Aspartate dehydrogenase domain-containing protein (ASPDH). [4]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Aspartate dehydrogenase domain-containing protein (ASPDH). [7]
------------------------------------------------------------------------------------
4 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Aspartate dehydrogenase domain-containing protein (ASPDH). [2]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Aspartate dehydrogenase domain-containing protein (ASPDH). [3]
Rosiglitazone DMILWZR Approved Rosiglitazone decreases the expression of Aspartate dehydrogenase domain-containing protein (ASPDH). [5]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Aspartate dehydrogenase domain-containing protein (ASPDH). [6]
------------------------------------------------------------------------------------

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
3 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
4 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
5 Transcriptomic analysis of untreated and drug-treated differentiated HepaRG cells over a 2-week period. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):27-35.
6 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
7 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.