General Information of Drug Off-Target (DOT) (ID: OTO1RSTS)

DOT Name Transmembrane protein 263 (TMEM263)
Gene Name TMEM263
UniProt ID
TM263_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF15475
Sequence
MNQTDKNQQEIPSYLNDEPPEGSMKDHPQQQPGMLSRVTGGIFSVTKGAVGATIGGVAWI
GGKSLEVTKTAVTTVPSMGIGLVKGGVSAVAGGVTAVGSAVVNKVPLTGKKKDKSD
Function May play a role in bone development.

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
8 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Transmembrane protein 263 (TMEM263). [1]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Transmembrane protein 263 (TMEM263). [2]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Transmembrane protein 263 (TMEM263). [3]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Transmembrane protein 263 (TMEM263). [5]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Transmembrane protein 263 (TMEM263). [6]
Bortezomib DMNO38U Approved Bortezomib increases the expression of Transmembrane protein 263 (TMEM263). [7]
Milchsaure DM462BT Investigative Milchsaure increases the expression of Transmembrane protein 263 (TMEM263). [9]
Cycloheximide DMGDA3C Investigative Cycloheximide increases the expression of Transmembrane protein 263 (TMEM263). [10]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Transmembrane protein 263 (TMEM263). [4]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of Transmembrane protein 263 (TMEM263). [8]
------------------------------------------------------------------------------------

References

1 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
2 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
3 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
4 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
5 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
6 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
7 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
8 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
9 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
10 Comparative analysis of AhR-mediated TCDD-elicited gene expression in human liver adult stem cells. Toxicol Sci. 2009 Nov;112(1):229-44.