General Information of Drug Off-Target (DOT) (ID: OTS1A2VE)

DOT Name 5'-AMP-activated protein kinase subunit gamma-3 (PRKAG3)
Synonyms AMPK gamma3; AMPK subunit gamma-3
Gene Name PRKAG3
Related Disease
B-cell lymphoma ( )
Breast cancer ( )
Breast carcinoma ( )
Carbohydrate metabolism disorder ( )
Estrogen-receptor positive breast cancer ( )
Polycystic ovarian syndrome ( )
Wolff-Parkinson-White syndrome ( )
UniProt ID
AAKG3_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00571
Sequence
MEPGLEHALRRTPSWSSLGGSEHQEMSFLEQENSSSWPSPAVTSSSERIRGKRRAKALRW
TRQKSVEEGEPPGQGEGPRSRPAAESTGLEATFPKTTPLAQADPAGVGTPPTGWDCLPSD
CTASAAGSSTDDVELATEFPATEAWECELEGLLEERPALCLSPQAPFPKLGWDDELRKPG
AQIYMRFMQEHTCYDAMATSSKLVIFDTMLEIKKAFFALVANGVRAAPLWDSKKQSFVGM
LTITDFILVLHRYYRSPLVQIYEIEQHKIETWREIYLQGCFKPLVSISPNDSLFEAVYTL
IKNRIHRLPVLDPVSGNVLHILTHKRLLKFLHIFGSLLPRPSFLYRTIQDLGIGTFRDLA
VVLETAPILTALDIFVDRRVSALPVVNECGQVVGLYSRFDVIHLAAQQTYNHLDMSVGEA
LRQRTLCLEGVLSCQPHESLGEVIDRIAREQVHRLVLVDETQHLLGVVSLSDILQALVLS
PAGIDALGA
Function
AMP/ATP-binding subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. AMPK also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. The AMPK gamma3 subunit is a non-catalytic subunit with a regulatory role in muscle energy metabolism. It mediates binding to AMP, ADP and ATP, leading to AMPK activation or inhibition: AMP-binding results in allosteric activation of alpha catalytic subunit (PRKAA1 or PRKAA2) both by inducing phosphorylation and preventing dephosphorylation of catalytic subunits. ADP also stimulates phosphorylation, without stimulating already phosphorylated catalytic subunit. ATP promotes dephosphorylation of catalytic subunit, rendering the AMPK enzyme inactive.
Tissue Specificity Skeletal muscle, with weak expression in heart and pancreas.
KEGG Pathway
FoxO sig.ling pathway (hsa04068 )
AMPK sig.ling pathway (hsa04152 )
Longevity regulating pathway (hsa04211 )
Longevity regulating pathway - multiple species (hsa04213 )
Apelin sig.ling pathway (hsa04371 )
Tight junction (hsa04530 )
Circadian rhythm (hsa04710 )
Thermogenesis (hsa04714 )
Insulin sig.ling pathway (hsa04910 )
Adipocytokine sig.ling pathway (hsa04920 )
Oxytocin sig.ling pathway (hsa04921 )
Glucagon sig.ling pathway (hsa04922 )
Insulin resistance (hsa04931 )
Non-alcoholic fatty liver disease (hsa04932 )
Alcoholic liver disease (hsa04936 )
Hypertrophic cardiomyopathy (hsa05410 )
Reactome Pathway
Macroautophagy (R-HSA-1632852 )
Activation of PPARGC1A (PGC-1alpha) by phosphorylation (R-HSA-2151209 )
Energy dependent regulation of mTOR by LKB1-AMPK (R-HSA-380972 )
TP53 Regulates Metabolic Genes (R-HSA-5628897 )
Regulation of TP53 Activity through Phosphorylation (R-HSA-6804756 )
Lipophagy (R-HSA-9613354 )
Activation of AMPK downstream of NMDARs (R-HSA-9619483 )
Translocation of SLC2A4 (GLUT4) to the plasma membrane (R-HSA-1445148 )

Molecular Interaction Atlas (MIA) of This DOT

7 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
B-cell lymphoma DISIH1YQ Strong Biomarker [1]
Breast cancer DIS7DPX1 Strong Genetic Variation [2]
Breast carcinoma DIS2UE88 Strong Genetic Variation [2]
Carbohydrate metabolism disorder DISV24X3 Strong Biomarker [3]
Estrogen-receptor positive breast cancer DIS1H502 Strong Genetic Variation [2]
Polycystic ovarian syndrome DISZ2BNG Strong Genetic Variation [4]
Wolff-Parkinson-White syndrome DISW4TQ8 Strong Genetic Variation [5]
------------------------------------------------------------------------------------
⏷ Show the Full List of 7 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
1 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of 5'-AMP-activated protein kinase subunit gamma-3 (PRKAG3). [6]
------------------------------------------------------------------------------------
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of 5'-AMP-activated protein kinase subunit gamma-3 (PRKAG3). [7]
------------------------------------------------------------------------------------

References

1 Association of AMP-activated protein kinase with risk and progression of non-Hodgkin lymphoma.Cancer Epidemiol Biomarkers Prev. 2013 Apr;22(4):736-44. doi: 10.1158/1055-9965.EPI-12-1014. Epub 2013 Feb 8.
2 Association of breast cancer risk and the mTOR pathway in women of African ancestry in 'The Root' Consortium.Carcinogenesis. 2017 Aug 1;38(8):789-796. doi: 10.1093/carcin/bgx055.
3 Gain-of-function R225W mutation in human AMPKgamma(3) causing increased glycogen and decreased triglyceride in skeletal muscle.PLoS One. 2007 Sep 19;2(9):e903. doi: 10.1371/journal.pone.0000903.
4 Association study of AMP-activated protein kinase subunit genes in polycystic ovary syndrome.Eur J Endocrinol. 2009 Sep;161(3):405-9. doi: 10.1530/EJE-09-0245. Epub 2009 Jul 2.
5 PRKAG3 polymorphisms associated with sporadic Wolff-Parkinson-White syndrome among a Taiwanese population.J Chin Med Assoc. 2016 Dec;79(12):656-660. doi: 10.1016/j.jcma.2016.08.008. Epub 2016 Nov 17.
6 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
7 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.