General Information of Drug Off-Target (DOT) (ID: OTUOKF1A)

DOT Name Importin subunit alpha-6 (KPNA5)
Synonyms Karyopherin subunit alpha-5
Gene Name KPNA5
Related Disease
Ebola virus infection ( )
UniProt ID
IMA6_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
4U2X
Pfam ID
PF00514 ; PF16186 ; PF01749
Sequence
MDAMASPGKDNYRMKSYKNKALNPQEMRRRREEEGIQLRKQKREEQLFKRRNVYLPRNDE
SMLESPIQDPDISSTVPIPEEEVVTTDMVQMIFSNNADQQLTATQKFRKLLSKEPNPPID
QVIQKPGVVQRFVKFLERNENCTLQFEAAWALTNIASGTFLHTKVVIETGAVPIFIKLLN
SEHEDVQEQAVWALGNIAGDNAECRDFVLNCEILPPLLELLTNSNRLTTTRNAVWALSNL
CRGKNPPPNFSKVSPCLNVLSRLLFSSDPDVLADVCWALSYLSDGPNDKIQAVIDSGVCR
RLVELLMHNDYKVVSPALRAVGNIVTGDDIQTQVILNCSALPCLLHLLSSPKESIRKEAC
WTVSNITAGNRAQIQAVIDANIFPVLIEILQKAEFRTRKEAAWAITNATSGGTPEQIRYL
VALGCIKPLCDLLTVMDSKIVQVALNGLENILRLGEQESKQNGIGINPYCALIEEAYGLD
KIEFLQSHENQEIYQKAFDLIEHYFGVEEDDPSIVPQVDENQQQFIFQQQEAPMDGFQL
Function
Functions in nuclear protein import as an adapter protein for nuclear receptor KPNB1. Binds specifically and directly to substrates containing either a simple or bipartite NLS motif. Docking of the importin/substrate complex to the nuclear pore complex (NPC) is mediated by KPNB1 through binding to nucleoporin FxFG repeats and the complex is subsequently translocated through the pore by an energy requiring, Ran-dependent mechanism. At the nucleoplasmic side of the NPC, Ran binds to importin-beta and the three components separate and importin-alpha and -beta are re-exported from the nucleus to the cytoplasm where GTP hydrolysis releases Ran from importin. The directionality of nuclear import is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus. Mediates nuclear import of STAT1 homodimers and STAT1/STAT2 heterodimers by recognizing non-classical NLSs of STAT1 and STAT2 through ARM repeats 8-9. Recognizes influenza A virus nucleoprotein through ARM repeat 7-9 In vitro, mediates the nuclear import of human cytomegalovirus UL84 by recognizing a non-classical NLS.
Tissue Specificity Testis.
KEGG Pathway
Nucleocytoplasmic transport (hsa03013 )
Influenza A (hsa05164 )
Chemical carcinogenesis - receptor activation (hsa05207 )
Reactome Pathway
NS1 Mediated Effects on Host Pathways (R-HSA-168276 )
ISG15 antiviral mechanism (R-HSA-1169408 )

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Ebola virus infection DISJAVM1 Limited Biomarker [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
8 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Importin subunit alpha-6 (KPNA5). [2]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Importin subunit alpha-6 (KPNA5). [3]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Importin subunit alpha-6 (KPNA5). [4]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Importin subunit alpha-6 (KPNA5). [5]
Folic acid DMEMBJC Approved Folic acid decreases the expression of Importin subunit alpha-6 (KPNA5). [6]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Importin subunit alpha-6 (KPNA5). [7]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Importin subunit alpha-6 (KPNA5). [8]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Importin subunit alpha-6 (KPNA5). [10]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Bisphenol A DM2ZLD7 Investigative Bisphenol A affects the methylation of Importin subunit alpha-6 (KPNA5). [9]
------------------------------------------------------------------------------------

References

1 Investigating Ebola virus pathogenicity using molecular dynamics.BMC Genomics. 2017 Aug 11;18(Suppl 5):566. doi: 10.1186/s12864-017-3912-2.
2 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
3 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
4 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
5 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
6 Folic acid supplementation dysregulates gene expression in lymphoblastoid cells--implications in nutrition. Biochem Biophys Res Commun. 2011 Sep 9;412(4):688-92. doi: 10.1016/j.bbrc.2011.08.027. Epub 2011 Aug 16.
7 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
8 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
9 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
10 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.