General Information of Drug Off-Target (DOT) (ID: OTYBZHCC)

DOT Name Retinol dehydrogenase 5 (RDH5)
Synonyms EC 1.1.1.209; EC 1.1.1.315; EC 1.1.1.53; 11-cis retinol dehydrogenase; 11-cis RDH; 11-cis RoDH; 9-cis retinol dehydrogenase; 9cRDH; Short chain dehydrogenase/reductase family 9C member 5
Gene Name RDH5
Related Disease
Fundus albipunctatus ( )
RDH5-related retinopathy ( )
UniProt ID
RDH5_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
1.1.1.209; 1.1.1.315; 1.1.1.53
Pfam ID
PF00106
Sequence
MWLPLLLGALLWAVLWLLRDRQSLPASNAFVFITGCDSGFGRLLALQLDQRGFRVLASCL
TPSGAEDLQRVASSRLHTTLLDITDPQSVQQAAKWVEMHVKEAGLFGLVNNAGVAGIIGP
TPWLTRDDFQRVLNVNTMGPIGVTLALLPLLQQARGRVINITSVLGRLAANGGGYCVSKF
GLEAFSDSLRRDVAHFGIRVSIVEPGFFRTPVTNLESLEKTLQACWARLPPATQAHYGGA
FLTKYLKMQQRIMNLICDPDLTKVSRCLEHALTARHPRTRYSPGWDAKLLWLPASYLPAS
LVDAVLTWVLPKPAQAVY
Function
Catalyzes the oxidation of cis-isomers of retinol, including 11-cis-, 9-cis-, and 13-cis-retinol in an NAD-dependent manner. Has no activity towards all-trans retinal. Plays a significant role in 11-cis retinol oxidation in the retinal pigment epithelium cells (RPE). Also recognizes steroids (androsterone, androstanediol) as its substrates.
Tissue Specificity Widely expressed. In the eye, abundant in the retinal pigment epithelium.
KEGG Pathway
Retinol metabolism (hsa00830 )
Metabolic pathways (hsa01100 )
Reactome Pathway
The canonical retinoid cycle in rods (twilight vision) (R-HSA-2453902 )
RA biosynthesis pathway (R-HSA-5365859 )
Retinoid cycle disease events (R-HSA-2453864 )
BioCyc Pathway
MetaCyc:HS06003-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

2 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Fundus albipunctatus DISNICY6 Definitive Semidominant [1]
RDH5-related retinopathy DISWZQ2C Definitive Autosomal recessive [2]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Retinol dehydrogenase 5 (RDH5). [3]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Retinol dehydrogenase 5 (RDH5). [9]
------------------------------------------------------------------------------------
6 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Retinol dehydrogenase 5 (RDH5). [4]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Retinol dehydrogenase 5 (RDH5). [5]
Dexamethasone DMMWZET Approved Dexamethasone increases the expression of Retinol dehydrogenase 5 (RDH5). [6]
Rosiglitazone DMILWZR Approved Rosiglitazone decreases the expression of Retinol dehydrogenase 5 (RDH5). [7]
Palbociclib DMD7L94 Approved Palbociclib increases the expression of Retinol dehydrogenase 5 (RDH5). [8]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Retinol dehydrogenase 5 (RDH5). [10]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 Drug(s)

References

1 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
2 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
3 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
4 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
5 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
6 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
7 Transcriptomic analysis of untreated and drug-treated differentiated HepaRG cells over a 2-week period. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):27-35.
8 Cdk4/6 inhibition induces epithelial-mesenchymal transition and enhances invasiveness in pancreatic cancer cells. Mol Cancer Ther. 2012 Oct;11(10):2138-48. doi: 10.1158/1535-7163.MCT-12-0562. Epub 2012 Aug 6.
9 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
10 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.