Details of the Drug Therapeutic Target (DTT)
General Information of Drug Therapeutic Target (DTT) (ID: TT78R5H)
DTT Name | Heat shock protein 90 alpha (HSP90A) | ||||
---|---|---|---|---|---|
Synonyms | Renal carcinoma antigen NY-REN-38; Lipopolysaccharide-associated protein 2; LPS-associated protein 2; LAP-2; Heat shock protein HSP 90-alpha; Heat shock 86 kDa; HSPCA; HSPC1; HSP90A; HSP86; HSP 86 | ||||
Gene Name | HSP90AA1 | ||||
DTT Type |
Successful target
|
[1] | |||
BioChemical Class |
Heat shock protein
|
||||
UniProt ID | |||||
TTD ID | |||||
3D Structure | |||||
Sequence |
MPEETQTQDQPMEEEEVETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNSSDALDKIR
YESLTDPSKLDSGKELHINLIPNKQDRTLTIVDTGIGMTKADLINNLGTIAKSGTKAFME ALQAGADISMIGQFGVGFYSAYLVAEKVTVITKHNDDEQYAWESSAGGSFTVRTDTGEPM GRGTKVILHLKEDQTEYLEERRIKEIVKKHSQFIGYPITLFVEKERDKEVSDDEAEEKED KEEEKEKEEKESEDKPEIEDVGSDEEEEKKDGDKKKKKKIKEKYIDQEELNKTKPIWTRN PDDITNEEYGEFYKSLTNDWEDHLAVKHFSVEGQLEFRALLFVPRRAPFDLFENRKKKNN IKLYVRRVFIMDNCEELIPEYLNFIRGVVDSEDLPLNISREMLQQSKILKVIRKNLVKKC LELFTELAEDKENYKKFYEQFSKNIKLGIHEDSQNRKKLSELLRYYTSASGDEMVSLKDY CTRMKENQKHIYYITGETKDQVANSAFVERLRKHGLEVIYMIEPIDEYCVQQLKEFEGKT LVSVTKEGLELPEDEEEKKKQEEKKTKFENLCKIMKDILEKKVEKVVVSNRLVTSPCCIV TSTYGWTANMERIMKAQALRDNSTMGYMAAKKHLEINPDHSIIETLRQKAEADKNDKSVK DLVILLYETALLSSGFSLEDPQTHANRIYRMIKLGLGIDEDDPTADDTSAAVTEEMPPLE GDDDTSRMEEVD |
||||
Function |
Undergoes a functional cycle that is linked to its ATPase activity which is essential for its chaperone activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function. Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself. Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co-chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle. Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels. In the first place, they alter the steady-state levels of certain transcription factors in response to various physiological cues(). Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment. Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression. Binds bacterial lipopolysaccharide (LPS) and mediates LPS-induced inflammatory response, including TNF secretion by monocytes. Antagonizes STUB1-mediated inhibition of TGF-beta signaling via inhibition of STUB1-mediated SMAD3 ubiquitination and degradation. Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction.
|
||||
KEGG Pathway |
|
||||
Reactome Pathway |
|
||||
Molecular Interaction Atlas (MIA) of This DTT
Molecular Interaction Atlas (MIA) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 Approved Drug(s) Targeting This DTT
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
14 Clinical Trial Drug(s) Targeting This DTT
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
4 Discontinued Drug(s) Targeting This DTT
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2 Preclinical Drug(s) Targeting This DTT
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
18 Investigative Drug(s) Targeting This DTT
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Molecular Expression Atlas (MEA) of This DTT
References
1 | Tanespimycin: the opportunities and challenges of targeting heat shock protein 90. Expert Opin Investig Drugs. 2009 Jun;18(6):861-8. | ||||
---|---|---|---|---|---|
2 | Hsp90 is a direct target of the anti-allergic drugs disodium cromoglycate and amlexanox. Biochem J. 2003 Sep 1;374(Pt 2):433-41. | ||||
3 | BIIB021, an orally available, fully synthetic small-molecule inhibitor of the heat shock protein Hsp90. Mol Cancer Ther. 2009 Apr;8(4):921-9. | ||||
4 | Efungumab: a novel agent in the treatment of invasive candidiasis. Ann Pharmacother. 2009 Nov;43(11):1818-23. | ||||
5 | Anti-tumor activity against multiple myeloma by combination of KW-2478, an Hsp90 inhibitor, with bortezomib. Blood Cancer J. 2012 Apr;2(4):e68. | ||||
6 | Recent advances in Hsp90 inhibitors as antitumor agents. Anticancer Agents Med Chem. 2008 Oct;8(7):761-82. | ||||
7 | SNX-2112, a selective Hsp90 inhibitor, potently inhibits tumor cell growth, angiogenesis, and osteoclastogenesis in multiple myeloma and other hema... Blood. 2009 Jan 22;113(4):846-55. | ||||
8 | Stage 1 testing and pharmacodynamic evaluation of the HSP90 inhibitor alvespimycin (17-DMAG, KOS-1022) by the pediatric preclinical testing program. Pediatr Blood Cancer. 2008 Jul;51(1):34-41. | ||||
9 | Astex Presents Updates on AT13387, its HSP90 Inhibitor, and AT9283, its Multi-Targeted Kinase Inhibitor at the EORTC-NCI-AACR Cancer Conference. Astex. 2008. | ||||
10 | Phase I study of BIIB028, a selective heat shock protein 90 inhibitor, in patients with refractory metastatic or locally advanced solid tumors. Clin Cancer Res. 2013 Sep 1;19(17):4824-31. | ||||
11 | Clinical pipeline report, company report or official report of Debiopharm (2011). | ||||
12 | Clinical pipeline report, company report or official report of the Pharmaceutical Research and Manufacturers of America (PhRMA) | ||||
13 | US patent application no. 2013,0023,420, Susceptibility to hsp90-inhibitors. | ||||
14 | Heat shock protein 90 regulates the stability of MEKK3 in HEK293 cells. Cell Immunol. 2009;259(1):49-55. | ||||
15 | Clinical pipeline report, company report or official report of AstraZeneca (2009). | ||||
16 | US patent application no. 2014,0079,636, Targeted therapeutics. | ||||
17 | WO patent application no. 2013,1734,36, Pre-selection of subjects for therapeutic treatment with an hsp90 inhibitor based on hypoxic status. | ||||
18 | Heat shock protein 90: inhibitors in clinical trials. J Med Chem. 2010 Jan 14;53(1):3-17. | ||||
19 | The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235-42. | ||||
20 | How many drug targets are there Nat Rev Drug Discov. 2006 Dec;5(12):993-6. | ||||
21 | Synthesis and evaluation of geldanamycin-estradiol hybrids. Bioorg Med Chem Lett. 1999 May 3;9(9):1233-8. | ||||
22 | In silico identification and biochemical evaluation of novel inhibitors of NRH:quinone oxidoreductase 2 (NQO2). Bioorg Med Chem Lett. 2010 Dec 15;20(24):7331-6. | ||||
23 | High-throughput screening assay for inhibitors of heat-shock protein 90 ATPase activity. Anal Biochem. 2004 Apr 15;327(2):176-83. | ||||
24 | Novel, potent small-molecule inhibitors of the molecular chaperone Hsp90 discovered through structure-based design. J Med Chem. 2005 Jun 30;48(13):4212-5. | ||||