General Information of Drug Therapeutic Target (DTT) (ID: TTVFB0O)

DTT Name Voltage-gated potassium channel Kv1.2 (KCNA2)
Synonyms Voltage-gated potassium channel subunit Kv1.2; Voltage-gated potassium channel HBK5; Voltage-gated K(+) channel HuKIV; Potassium voltage-gated channel subfamily A member 2; NGK1
Gene Name KCNA2
DTT Type
Literature-reported target
[1]
BioChemical Class
Voltage-gated ion channel
UniProt ID
KCNA2_HUMAN
TTD ID
T19492
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Sequence
MTVATGDPADEAAALPGHPQDTYDPEADHECCERVVINISGLRFETQLKTLAQFPETLLG
DPKKRMRYFDPLRNEYFFDRNRPSFDAILYYYQSGGRLRRPVNVPLDIFSEEIRFYELGE
EAMEMFREDEGYIKEEERPLPENEFQRQVWLLFEYPESSGPARIIAIVSVMVILISIVSF
CLETLPIFRDENEDMHGSGVTFHTYSNSTIGYQQSTSFTDPFFIVETLCIIWFSFEFLVR
FFACPSKAGFFTNIMNIIDIVAIIPYFITLGTELAEKPEDAQQGQQAMSLAILRVIRLVR
VFRIFKLSRHSKGLQILGQTLKASMRELGLLIFFLFIGVILFSSAVYFAEADERESQFPS
IPDAFWWAVVSMTTVGYGDMVPTTIGGKIVGSLCAIAGVLTIALPVPVIVSNFNYFYHRE
TEGEEQAQYLQVTSCPKIPSSPDLKKSRSASTISKSDYMEIQEGVNNSNEDFREENLKTA
NCTLANTNYVNITKMLTDV
Function
Prevents aberrant action potential firing and regulates neuronal output. Forms tetrameric potassium-selective channels through which potassium ions pass in accordance with their electrochemical gradient. The channel alternates between opened and closed conformations in response to the voltage difference across the membrane. Can form functional homotetrameric channels and heterotetrameric channels that contain variable proportions of KCNA1, KCNA2, KCNA4, KCNA5, KCNA6, KCNA7, and possibly other family members as well; channel properties depend on the type of alpha subunits that are part of the channel. Channel properties are modulated by cytoplasmic beta subunits that regulate the subcellular location of the alpha subunits and promote rapid inactivation of delayed rectifier potassium channels. In vivo, membranes probably contain a mixture of heteromeric potassium channel complexes, making it difficult to assign currents observed in intact tissues to any particular potassium channel family member. Homotetrameric KCNA2 forms a delayed-rectifier potassium channel that opens in response to membrane depolarization, followed by slow spontaneous channel closure. In contrast, a heteromultimer formed by KCNA2 and KCNA4 shows rapid inactivation. Regulates neuronal excitability and plays a role as pacemaker in the regulation of neuronal action potentials. KCNA2-containing channels play a presynaptic role and prevent hyperexcitability and aberrant action potential firing. Response to toxins that are selective for KCNA2-containing potassium channels suggests that in Purkinje cells, dendritic subthreshold KCNA2-containing potassium channels prevent random spontaneous calcium spikes, suppressing dendritic hyperexcitability without hindering the generation of somatic action potentials, and thereby play an important role in motor coordination. Plays a role in the induction of long-term potentiation of neuron excitability in the CA3 layer of the hippocampus. May function as down-stream effector for G protein-coupled receptors and inhibit GABAergic inputs to basolateral amygdala neurons. May contribute to the regulation of neurotransmitter release, such as gamma-aminobutyric acid (GABA). Contributes to the regulation of the axonal release of the neurotransmitter dopamine. Reduced KCNA2 expression plays a role in the perception of neuropathic pain after peripheral nerve injury, but not acute pain. Plays a role in the regulation of the time spent in non-rapid eye movement (NREM) sleep. Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes, primarily in the brain and the central nervous system, but also in the cardiovascular system.
Reactome Pathway
Voltage gated Potassium channels (R-HSA-1296072 )

Molecular Interaction Atlas (MIA) of This DTT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DTT
2 Investigative Drug(s) Targeting This DTT
Drug Name Drug ID Indication ICD 11 Highest Status REF
mast cell degranulating peptide DMDZIHT Discovery agent N.A. Investigative [1]
[14C]TEA DM6SFYH Discovery agent N.A. Investigative [1]
------------------------------------------------------------------------------------

References

1 Pharmacological characterization of five cloned voltage-gated K+ channels, types Kv1.1, 1.2, 1.3, 1.5, and 3.1, stably expressed in mammalian cell lines. Mol Pharmacol. 1994 Jun;45(6):1227-34.