General Information of Disease (ID: DIS6ZZMF)

Disease Name Vascular purpura
Synonyms
vascular purpura; purpura, Schonlein-Henoch; Henoch Schonlein purpura; Henoch-Scholein purpura; purpura rheumatica; IgA vasculitis; Schoenlein-Henoch purpura; autoimmune purpura; HSP; purpura, autoimmune; Henoch-Schoenlein purpura; rheumatoid purpura; anaphylactoid purpura; allergic purpura; Henoch-Schonlein purpura
Disease Class 3B60: Non-thrombocytopenic purpura
Definition A systemic IgA vasculitis that affects small vessels. It is characterized by skin purpura, arthritis, and abdominal and/or renal involvement.
Disease Hierarchy
DISL61M8: Necrotizing vasculitis
DISI1ZGQ: Hypersensitivity vasculitis
DISWMOW2: Immune complex mediated vasculitis
DIS6ZZMF: Vascular purpura
ICD Code
ICD-11
ICD-11: 3B60
ICD-10
ICD-10: D69, D69.2
Disease Identifiers
MONDO ID
MONDO_0019167
MESH ID
D011695
UMLS CUI
C0034152
MedGen ID
48265
Orphanet ID
761
SNOMED CT ID
191306005

Drug-Interaction Atlas (DIA) of This Disease

Drug-Interaction Atlas (DIA)
This Disease is Treated as An Indication in 1 Approved Drug(s)
Drug Name Drug ID Highest Status Drug Type REF
Hesperidin DMI5DW1 Approved Small molecular drug [1]
------------------------------------------------------------------------------------

Molecular Interaction Atlas (MIA) of This Disease

Molecular Interaction Atlas (MIA)
This Disease Is Related to 16 DTT Molecule(s)
Gene Name DTT ID Evidence Level Mode of Inheritance REF
C3 TTJGY7A Limited Biomarker [2]
PLAU TTGY7WI Limited Therapeutic [3]
ASIC2 TTVMWLP Strong Altered Expression [4]
ASIC3 TTLGDIS Strong Biomarker [4]
ATP1A1 TTWK8D0 Strong Genetic Variation [5]
ATXN3 TT6A17J Strong Biomarker [6]
CAPN1 TT1WBIJ Strong Biomarker [7]
DNAJB1 TTPXAWS Strong Biomarker [8]
DNM2 TTVRA5G Strong Genetic Variation [9]
ITPR1 TT5HWAT Strong Genetic Variation [10]
KCNA2 TTVFB0O Strong Genetic Variation [11]
NAAA TTMN4HY Strong Biomarker [12]
PNPLA6 TTWAQU2 Strong Biomarker [13]
RNF6 TT4S09X Strong Genetic Variation [14]
SLC33A1 TTL69WB Strong Genetic Variation [15]
VCP TTHNLSB Strong Genetic Variation [16]
------------------------------------------------------------------------------------
⏷ Show the Full List of 16 DTT(s)
This Disease Is Related to 2 DME Molecule(s)
Gene Name DME ID Evidence Level Mode of Inheritance REF
CYP7B1 DE36TMY Strong Genetic Variation [17]
FARS2 DE0WGR8 Strong Genetic Variation [18]
------------------------------------------------------------------------------------
This Disease Is Related to 53 DOT Molecule(s)
Gene Name DOT ID Evidence Level Mode of Inheritance REF
AP4M1 OT2BG2Z3 moderate Genetic Variation [19]
AFG3L2 OTRPMAUX Strong Biomarker [20]
ALDH18A1 OT6W40XU Strong Biomarker [21]
ALS2 OT8BAM04 Strong Genetic Variation [22]
AP4B1 OTGJUIRA Strong Biomarker [23]
ARHGEF5 OTUVGFT9 Strong Altered Expression [24]
ARL6IP1 OT536XAV Strong Genetic Variation [25]
ATAD3A OTWF6HBP Strong Genetic Variation [26]
ATP13A2 OTKWBUGK Strong Genetic Variation [27]
B4GALNT1 OTCY80HS Strong Genetic Variation [28]
BICD2 OTVJ03NZ Strong Genetic Variation [29]
C1GALT1 OT2ZSZ6P Strong Genetic Variation [30]
CPT1C OT8F1MBF Strong Biomarker [31]
CYP2U1 OT6RXLXS Strong Genetic Variation [32]
DDHD1 OTWTHOWK Strong Biomarker [33]
DDHD2 OTUP0WHF Strong Biomarker [34]
DPY30 OTLHCJ6C Strong Altered Expression [35]
ERLIN2 OT551BVG Strong Genetic Variation [10]
FA2H OT8HA13U Strong Biomarker [36]
FAT2 OTRGT3E8 Strong Biomarker [31]
GBA2 OTOZXG5D Strong Biomarker [37]
HAVCR1 OT184CRZ Strong Altered Expression [38]
IGFALS OTTWCZYM Strong Biomarker [39]
KIF13B OTAFS1YV Strong Biomarker [40]
KIF1A OT3JVEGV Strong Biomarker [41]
KIF1B OTI1XQTO Strong Biomarker [42]
KIF1C OTKYLP1Q Strong Genetic Variation [43]
KIF5B OTT34MT8 Strong Genetic Variation [44]
KIF5C OT35570Y Strong Genetic Variation [44]
KRT10 OTSVRD3Q Strong Biomarker [45]
MAD2L1BP OT2O2IUJ Strong Biomarker [42]
MGAT5 OTU4DD4G Strong Biomarker [46]
MMP26 OT9O89KU Strong Altered Expression [47]
NIPA1 OT9ODC8X Strong Biomarker [48]
PAX2 OTKP1N8F Strong Genetic Variation [49]
PITPNM3 OTHLZY8D Strong Genetic Variation [50]
PLA2G6 OT5FL0WU Strong Genetic Variation [51]
PLD3 OTL07SP2 Strong Biomarker [31]
POU2F3 OTIOOJWD Strong Genetic Variation [52]
REEP1 OTEMVFX7 Strong Biomarker [53]
RNF170 OT2O6F4D Strong Genetic Variation [10]
SCYL1 OTQ0IN7P Strong Biomarker [31]
SEC24D OTXR3KC9 Strong Genetic Variation [54]
SFXN1 OTL66767 Strong Genetic Variation [55]
SPART OTIVOS2I Strong Genetic Variation [56]
SPAST OTIF3AJI Strong Biomarker [57]
SPG11 OTZ7LJX4 Strong Genetic Variation [58]
SPTAN1 OT6VY3A3 Strong Genetic Variation [59]
TECPR2 OT1UFECZ Strong Biomarker [54]
TFG OT2KJENI Strong Biomarker [60]
TIMELESS OTD8DCBJ Strong Altered Expression [24]
COL4A5 OTHG60RE Definitive Biomarker [61]
REEP2 OTPCRA5O Definitive Genetic Variation [62]
------------------------------------------------------------------------------------
⏷ Show the Full List of 53 DOT(s)

References

1 Drugs@FDA. U.S. Food and Drug Administration. U.S. Department of Health & Human Services. 2015
2 Adult Schnlein-Henoch purpura after enalapril.Lancet. 1992 Aug 1;340(8814):304-5. doi: 10.1016/0140-6736(92)92391-r.
3 Efficacy of methylprednisolone and urokinase pulse therapy for severe Henoch-Schnlein nephritis.Pediatrics. 2003 Apr;111(4 Pt 1):785-9. doi: 10.1542/peds.111.4.785.
4 Expression of acid-sensing ion channels of gastric mucosa from patients with Henoch-Schnlein purpura.J Pediatr Gastroenterol Nutr. 2012 Apr;54(4):561-3. doi: 10.1097/MPG.0b013e318244255f.
5 Hereditary spastic paraplegia is a novel phenotype for germline de novo ATP1A1 mutation.Clin Genet. 2020 Mar;97(3):521-526. doi: 10.1111/cge.13668. Epub 2019 Dec 5.
6 Six cases of SCA3/MJD patients that mimic hereditary spastic paraplegia in clinic.J Neurol Sci. 2009 Oct 15;285(1-2):121-4. doi: 10.1016/j.jns.2009.06.027. Epub 2009 Jul 15.
7 Two novel homozygous mutations of CAPN1 in Chinese patients with hereditary spastic paraplegia and literatures review.Orphanet J Rare Dis. 2019 Apr 25;14(1):83. doi: 10.1186/s13023-019-1053-1.
8 Expression of heat shock proteins in adult honey bee (Apis mellifera L.) workers under hot-arid subtropical ecosystems.Saudi J Biol Sci. 2019 Nov;26(7):1372-1376. doi: 10.1016/j.sjbs.2019.08.017. Epub 2019 Aug 27.
9 Differential Expression of Several miRNAs and the Host Genes AATK and DNM2 in Leukocytes of Sporadic ALS Patients.Front Mol Neurosci. 2018 Apr 4;11:106. doi: 10.3389/fnmol.2018.00106. eCollection 2018.
10 Bi-allelic variants in RNF170 are associated with hereditary spastic paraplegia.Nat Commun. 2019 Oct 21;10(1):4790. doi: 10.1038/s41467-019-12620-9.
11 A recurrent mutation in KCNA2 as a novel cause of hereditary spastic paraplegia and ataxia.Ann Neurol. 2016 Oct;80(4):638-42. doi: 10.1002/ana.24762. Epub 2016 Sep 9.
12 Analysis on kidney injury-related clinical risk factors and evaluation on the therapeutic effects of hemoperfusion in children with Henoch-Schonlein purpura.Eur Rev Med Pharmacol Sci. 2017 Oct;21(17):3894-3899.
13 Constructs of human neuropathy target esterase catalytic domain containing mutations related to motor neuron disease have altered enzymatic properties. Toxicol Lett. 2010 Jul 1;196(2):67-73. doi: 10.1016/j.toxlet.2010.03.1120. Epub 2010 Apr 9.
14 Further evidence for a fourth gene causing X-linked pure spastic paraplegia.Am J Med Genet. 2002 Aug 1;111(2):152-6. doi: 10.1002/ajmg.10551.
15 S113R mutation in SLC33A1 leads to neurodegeneration and augmented BMP signaling in a mouse model.Dis Model Mech. 2017 Jan 1;10(1):53-62. doi: 10.1242/dmm.026880. Epub 2016 Nov 24.
16 The involvement of endoplasmic reticulum formation and protein synthesis efficiency in VCP- and ATL1-related neurological disorders.J Biomed Sci. 2018 Jan 8;25(1):2. doi: 10.1186/s12929-017-0403-3.
17 Hereditary spastic paraplegia in Greece: characterisation of a previously unexplored population using next-generation sequencing.Eur J Hum Genet. 2016 Jun;24(6):857-63. doi: 10.1038/ejhg.2015.200. Epub 2015 Sep 16.
18 A Newly Identified Missense Mutation in FARS2 Causes Autosomal-Recessive Spastic Paraplegia. Hum Mutat. 2016 Feb;37(2):165-9. doi: 10.1002/humu.22930. Epub 2015 Dec 10.
19 Genotype-phenotype correlations and expansion of the molecular spectrum of AP4M1-related hereditary spastic paraplegia.Orphanet J Rare Dis. 2017 Nov 2;12(1):172. doi: 10.1186/s13023-017-0721-2.
20 Loss of m-AAA protease in mitochondria causes complex I deficiency and increased sensitivity to oxidative stress in hereditary spastic paraplegia.J Cell Biol. 2003 Nov 24;163(4):777-87. doi: 10.1083/jcb.200304112. Epub 2003 Nov 17.
21 Hereditary Spastic Paraplegia Is a Common Phenotypic Finding in ARG1 Deficiency, P5CS Deficiency and HHH Syndrome: Three Inborn Errors of Metabolism Caused by Alteration of an Interconnected Pathway of Glutamate and Urea Cycle Metabolism.Front Neurol. 2019 Feb 22;10:131. doi: 10.3389/fneur.2019.00131. eCollection 2019.
22 Hereditary spastic paraplegias: identification of a novel SPG57 variant affecting TFG oligomerization and description of HSP subtypes in Sudan.Eur J Hum Genet. 2016 Jan;25(1):100-110. doi: 10.1038/ejhg.2016.108. Epub 2016 Sep 7.
23 Clinical and genetic characterization of AP4B1-associated SPG47.Am J Med Genet A. 2018 Feb;176(2):311-318. doi: 10.1002/ajmg.a.38561. Epub 2017 Nov 28.
24 Decreased TIM-3 mRNA expression in peripheral blood mononuclear cells from nephropathy patients.Genet Mol Res. 2015 Jun 12;14(2):6543-8. doi: 10.4238/2015.June.12.7.
25 Truncating ARL6IP1 variant as the genetic cause of fatal complicated hereditary spastic paraplegia.BMC Med Genet. 2019 Jul 4;20(1):119. doi: 10.1186/s12881-019-0851-6.
26 ATPase-deficient mitochondrial inner membrane protein ATAD3A disturbs mitochondrial dynamics in dominant hereditary spastic paraplegia.Hum Mol Genet. 2017 Apr 15;26(8):1432-1443. doi: 10.1093/hmg/ddx042.
27 Partial loss of ATP13A2 causes selective gliosis independent of robust lipofuscinosis.Mol Cell Neurosci. 2018 Oct;92:17-26. doi: 10.1016/j.mcn.2018.05.009. Epub 2018 Jun 1.
28 Diseases of ganglioside biosynthesis: An expanding group of congenital disorders of glycosylation.Mol Genet Metab. 2018 Aug;124(4):230-237. doi: 10.1016/j.ymgme.2018.06.014. Epub 2018 Jun 28.
29 BICD2 mutational analysis in hereditary spastic paraplegia and hereditary motor and sensory neuropathy.Muscle Nerve. 2019 Apr;59(4):484-486. doi: 10.1002/mus.26394. Epub 2018 Dec 21.
30 A study on the association between C1GALT1 polymorphisms and the risk of Henoch-Schnlein purpura in a Chinese population.Rheumatol Int. 2013 Oct;33(10):2539-42. doi: 10.1007/s00296-013-2761-9. Epub 2013 Apr 27.
31 Hereditary ataxias and paraparesias: clinical and genetic update. Curr Opin Neurol. 2018 Aug;31(4):462-471. doi: 10.1097/WCO.0000000000000585.
32 Whole exome sequencing identifies novel variant underlying hereditary spastic paraplegia in consanguineous Pakistani families.J Clin Neurosci. 2019 Sep;67:19-23. doi: 10.1016/j.jocn.2019.06.039. Epub 2019 Jul 4.
33 The Spastic Paraplegia-Associated Phospholipase DDHD1 Is a Primary Brain Phosphatidylinositol Lipase.Biochemistry. 2018 Oct 2;57(39):5759-5767. doi: 10.1021/acs.biochem.8b00810. Epub 2018 Sep 17.
34 Defining the clinical-genetic and neuroradiological features in SPG54: description of eight additional cases and nine novel DDHD2 variants.J Neurol. 2019 Nov;266(11):2657-2664. doi: 10.1007/s00415-019-09466-y. Epub 2019 Jul 13.
35 Novel SPAST deletion and reduced DPY30 expression in a Spastic Paraplegia type 4 kindred.BMC Med Genet. 2014 Apr 1;15:39. doi: 10.1186/1471-2350-15-39.
36 Autosomal recessive hereditary spastic paraplegia type SPG35 due to a novel variant in the FA2H gene in a Czech patient.J Clin Neurosci. 2019 Jan;59:337-339. doi: 10.1016/j.jocn.2018.10.094. Epub 2018 Nov 13.
37 Species-specific differences in nonlysosomal glucosylceramidase GBA2 function underlie locomotor dysfunction arising from loss-of-function mutations.J Biol Chem. 2019 Mar 15;294(11):3853-3871. doi: 10.1074/jbc.RA118.006311. Epub 2019 Jan 20.
38 Kidney Injury Molecule-1 Level is Associated with the Severity of Renal Interstitial Injury and Prognosis in Adult Henoch-Schnlein Purpura Nephritis.Arch Med Res. 2017 Jul;48(5):449-458. doi: 10.1016/j.arcmed.2017.10.005. Epub 2017 Nov 6.
39 Next-generation sequencing study reveals the broader variant spectrum of hereditary spastic paraplegia and related phenotypes.Neurogenetics. 2019 Mar;20(1):27-38. doi: 10.1007/s10048-019-00565-6. Epub 2019 Feb 19.
40 A novel locus for hereditary spastic paraplegia with thin corpus callosum and epilepsy.Neurology. 2006 Apr 25;66(8):1230-4. doi: 10.1212/01.wnl.0000208501.52849.dd.
41 Long-term follow-up until early adulthood in autosomal dominant, complex SPG30 with a novel KIF1A variant: a case report.Ital J Pediatr. 2019 Dec 3;45(1):155. doi: 10.1186/s13052-019-0752-5.
42 A network biology approach to unraveling inherited axonopathies.Sci Rep. 2019 Feb 8;9(1):1692. doi: 10.1038/s41598-018-37119-z.
43 Clinical phenotype of hereditary spastic paraplegia due to KIF1C gene mutations across life span.Brain Dev. 2018 Jun;40(6):458-464. doi: 10.1016/j.braindev.2018.02.013. Epub 2018 Mar 12.
44 Three routes to suppression of the neurodegenerative phenotypes caused by kinesin heavy chain mutations.Genetics. 2012 Sep;192(1):173-83. doi: 10.1534/genetics.112.140798. Epub 2012 Jun 19.
45 Molecular mimicry between HSP 65 of Mycobacterium leprae and cytokeratin 10 of the host keratin; role in pathogenesis of leprosy.Cell Immunol. 2012 Jul-Aug;278(1-2):63-75. doi: 10.1016/j.cellimm.2012.06.011. Epub 2012 Jul 20.
46 Exploration of susceptible genes associated with Henoch-Schnlein purpura by whole exome sequencing.Adv Clin Exp Med. 2019 Sep;28(9):1199-1207. doi: 10.17219/acem/103800.
47 The gene expression profile of matrix metalloproteinases and their inhibitors in children with Henoch-Schnlein purpura.Br J Dermatol. 2011 Jun;164(6):1348-55. doi: 10.1111/j.1365-2133.2011.10295.x.
48 TDP-43 pathology in a case of hereditary spastic paraplegia with a NIPA1/SPG6 mutation.Acta Neuropathol. 2012 Aug;124(2):285-91. doi: 10.1007/s00401-012-0947-y.
49 Association of the paired box 2 gene polymorphism with the susceptibility and pathogenesis of HenochSchnlein purpura in children.Mol Med Rep. 2015 Mar;11(3):1997-2003. doi: 10.3892/mmr.2014.2908. Epub 2014 Nov 10.
50 Engineered Exosome-Mediated Near-Infrared-II Region V(2)C Quantum Dot Delivery for Nucleus-Target Low-Temperature Photothermal Therapy.ACS Nano. 2019 Feb 26;13(2):1499-1510. doi: 10.1021/acsnano.8b07224. Epub 2019 Jan 29.
51 PLA2G6-associated neurodegeneration presenting as a complicated form of hereditary spastic paraplegia.J Hum Genet. 2019 Jan;64(1):55-59. doi: 10.1038/s10038-018-0519-7. Epub 2018 Oct 9.
52 Mutations in DDHD2, encoding an intracellular phospholipase A(1), cause a recessive form of complex hereditary spastic paraplegia. Am J Hum Genet. 2012 Dec 7;91(6):1073-81. doi: 10.1016/j.ajhg.2012.10.017. Epub 2012 Nov 21.
53 Peripheral neuropathy in hereditary spastic paraplegia caused by REEP1 variants.J Neurol. 2019 Mar;266(3):735-744. doi: 10.1007/s00415-019-09196-1. Epub 2019 Jan 12.
54 TECPR2 Cooperates with LC3C to Regulate COPII-Dependent ER Export.Mol Cell. 2015 Oct 1;60(1):89-104. doi: 10.1016/j.molcel.2015.09.010.
55 Mutations in CYP2U1, DDHD2 and GBA2 genes are rare causes of complicated forms of hereditary spastic paraparesis.J Neurol. 2014 Feb;261(2):373-81. doi: 10.1007/s00415-013-7206-6. Epub 2013 Dec 13.
56 Three cases of Troyer syndrome in two families of Filipino descent.Am J Med Genet A. 2016 Jul;170(7):1780-5. doi: 10.1002/ajmg.a.37658. Epub 2016 Apr 26.
57 MiR-33a is a therapeutic target in SPG4-related hereditary spastic paraplegia human neurons.Clin Sci (Lond). 2019 Feb 22;133(4):583-595. doi: 10.1042/CS20180980. Print 2019 Feb 28.
58 Are Cognitive Changes in Hereditary Spastic Paraplegias Restricted to Complicated Forms?.Front Neurol. 2019 May 24;10:508. doi: 10.3389/fneur.2019.00508. eCollection 2019.
59 SPTAN1 variants as a potential cause for autosomal recessive hereditary spastic paraplegia.J Hum Genet. 2019 Nov;64(11):1145-1151. doi: 10.1038/s10038-019-0669-2. Epub 2019 Sep 12.
60 Pathogenic TFG Mutations Underlying Hereditary Spastic Paraplegia Impair Secretory Protein Trafficking and Axon Fasciculation.Cell Rep. 2018 Aug 28;24(9):2248-2260. doi: 10.1016/j.celrep.2018.07.081.
61 Refined genetic mapping and proteolipid protein mutation analysis in X-linked pure hereditary spastic paraplegia.Neurology. 1996 Apr;46(4):1112-7. doi: 10.1212/wnl.46.4.1112.
62 Loss of association of REEP2 with membranes leads to hereditary spastic paraplegia. Am J Hum Genet. 2014 Feb 6;94(2):268-77. doi: 10.1016/j.ajhg.2013.12.005. Epub 2014 Jan 2.