General Information of Drug Off-Target (DOT) (ID: OTD046KA)

DOT Name Rho GTPase-activating protein 19 (ARHGAP19)
Synonyms Rho-type GTPase-activating protein 19
Gene Name ARHGAP19
UniProt ID
RHG19_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00620
Sequence
MATEAQSEGEVPARESGRSDAICSFVICNDSSLRGQPIIFNPDFFVEKLRHEKPEIFTEL
VVSNITRLIDLPGTELAQLMGEVDLKLPGGAGPASGFFRSLMSLKRKEKGVIFGSPLTEE
GIAQIYQLIEYLHKNLRVEGLFRVPGNSVRQQILRDALNNGTDIDLESGEFHSNDVATLL
KMFLGELPEPLLTHKHFNAHLKIADLMQFDDKGNKTNIPDKDRQIEALQLLFLILPPPNR
NLLKLLLDLLYQTAKKQDKNKMSAYNLALMFAPHVLWPKNVTANDLQENITKLNSGMAFM
IKHSQKLFKAPAYIRECARLHYLGSRTQASKDDLDLIASCHTKSFQLAKSQKRNRVDSCP
HQEETQHHTEEALRELFQHVHDMPESAKKKQLIRQFNKQSLTQTPGREPSTSQVQKRARS
RSFSGLIKRKVLGNQMMSEKKKKNPTPESVAIGELKGTSKENRNLLFSGSPAVTMTPTRL
KWSEGKKEGKKGFL
Function GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state.
Tissue Specificity Strong expression in fetal heart, brain, placenta, lung, liver, skeletal muscle, kidney and pancreas. Weak expression in adult pancreas, spleen, thymus, and ovary.
Reactome Pathway
RHOA GTPase cycle (R-HSA-8980692 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Arsenic trioxide DM61TA4 Approved Rho GTPase-activating protein 19 (ARHGAP19) increases the response to substance of Arsenic trioxide. [14]
------------------------------------------------------------------------------------
12 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Rho GTPase-activating protein 19 (ARHGAP19). [1]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Rho GTPase-activating protein 19 (ARHGAP19). [2]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Rho GTPase-activating protein 19 (ARHGAP19). [4]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of Rho GTPase-activating protein 19 (ARHGAP19). [5]
Testosterone DM7HUNW Approved Testosterone decreases the expression of Rho GTPase-activating protein 19 (ARHGAP19). [5]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Rho GTPase-activating protein 19 (ARHGAP19). [6]
Zoledronate DMIXC7G Approved Zoledronate decreases the expression of Rho GTPase-activating protein 19 (ARHGAP19). [7]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Rho GTPase-activating protein 19 (ARHGAP19). [9]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Rho GTPase-activating protein 19 (ARHGAP19). [10]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Rho GTPase-activating protein 19 (ARHGAP19). [11]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Rho GTPase-activating protein 19 (ARHGAP19). [12]
Coumestrol DM40TBU Investigative Coumestrol increases the expression of Rho GTPase-activating protein 19 (ARHGAP19). [13]
------------------------------------------------------------------------------------
⏷ Show the Full List of 12 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Rho GTPase-activating protein 19 (ARHGAP19). [3]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of Rho GTPase-activating protein 19 (ARHGAP19). [8]
------------------------------------------------------------------------------------

References

1 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
2 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
3 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
4 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
5 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
6 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
7 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
8 Effect of aflatoxin B(1), benzo[a]pyrene, and methapyrilene on transcriptomic and epigenetic alterations in human liver HepaRG cells. Food Chem Toxicol. 2018 Nov;121:214-223. doi: 10.1016/j.fct.2018.08.034. Epub 2018 Aug 26.
9 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
10 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
11 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
12 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
13 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
14 The NRF2-mediated oxidative stress response pathway is associated with tumor cell resistance to arsenic trioxide across the NCI-60 panel. BMC Med Genomics. 2010 Aug 13;3:37. doi: 10.1186/1755-8794-3-37.