General Information of Drug Off-Target (DOT) (ID: OTE3L48D)

DOT Name Glutaredoxin-related protein 5, mitochondrial (GLRX5)
Synonyms Monothiol glutaredoxin-5
Gene Name GLRX5
Related Disease
Friedreich's ataxia ( )
Hepatocellular carcinoma ( )
Inherited sideroblastic anemia ( )
Myopathy ( )
Sideroblastic anemia 2 ( )
Sideroblastic anemia 3 ( )
Spasticity-ataxia-gait anomalies syndrome ( )
X-linked sideroblastic anemia 1 ( )
Anemia ( )
Bacteremia ( )
Methicillin-resistant staphylococci infection ( )
Glycine encephalopathy ( )
Sideroblastic anemia ( )
Type-1/2 diabetes ( )
UniProt ID
GLRX5_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2MMZ; 2WUL
Pfam ID
PF00462
Sequence
MSGSLGRAAAALLRWGRGAGGGGLWGPGVRAAGSGAGGGGSAEQLDALVKKDKVVVFLKG
TPEQPQCGFSNAVVQILRLHGVRDYAAYNVLDDPELRQGIKDYSNWPTIPQVYLNGEFVG
GCDILLQMHQNGDLVEELKKLGIHSALLDEKKDQDSK
Function
Monothiol glutaredoxin involved in mitochondrial iron-sulfur (Fe/S) cluster transfer. Receives 2Fe/2S clusters from scaffold protein ISCU and mediates their transfer to apoproteins, to the 4Fe/FS cluster biosynthesis machinery, or export from mitochondrion. Required for normal regulation of hemoglobin synthesis by the iron-sulfur protein ACO1.
Reactome Pathway
Mitochondrial iron-sulfur cluster biogenesis (R-HSA-1362409 )

Molecular Interaction Atlas (MIA) of This DOT

14 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Friedreich's ataxia DIS5DV35 Strong Biomarker [1]
Hepatocellular carcinoma DIS0J828 Strong Altered Expression [2]
Inherited sideroblastic anemia DISLT2PU Strong Genetic Variation [3]
Myopathy DISOWG27 Strong Biomarker [1]
Sideroblastic anemia 2 DIS3T984 Strong Biomarker [4]
Sideroblastic anemia 3 DIS0LANJ Strong Autosomal recessive [5]
Spasticity-ataxia-gait anomalies syndrome DISD9OYI Strong Autosomal recessive [5]
X-linked sideroblastic anemia 1 DISWBQC7 Strong Genetic Variation [6]
Anemia DISTVL0C moderate Genetic Variation [7]
Bacteremia DIS6N9RZ moderate Biomarker [8]
Methicillin-resistant staphylococci infection DIS6DRDZ moderate Biomarker [8]
Glycine encephalopathy DISI2XE5 Disputed Genetic Variation [9]
Sideroblastic anemia DIS4F3X1 Limited Biomarker [10]
Type-1/2 diabetes DISIUHAP Limited Biomarker [11]
------------------------------------------------------------------------------------
⏷ Show the Full List of 14 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Glutaredoxin-related protein 5, mitochondrial (GLRX5). [12]
------------------------------------------------------------------------------------
8 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Glutaredoxin-related protein 5, mitochondrial (GLRX5). [13]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Glutaredoxin-related protein 5, mitochondrial (GLRX5). [14]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Glutaredoxin-related protein 5, mitochondrial (GLRX5). [15]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Glutaredoxin-related protein 5, mitochondrial (GLRX5). [16]
Isotretinoin DM4QTBN Approved Isotretinoin decreases the expression of Glutaredoxin-related protein 5, mitochondrial (GLRX5). [17]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Glutaredoxin-related protein 5, mitochondrial (GLRX5). [18]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Glutaredoxin-related protein 5, mitochondrial (GLRX5). [19]
chloropicrin DMSGBQA Investigative chloropicrin decreases the expression of Glutaredoxin-related protein 5, mitochondrial (GLRX5). [20]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Drug(s)

References

1 Iron-sulfur cluster biogenesis and human disease.Trends Genet. 2008 Aug;24(8):398-407. doi: 10.1016/j.tig.2008.05.008. Epub 2008 Jul 5.
2 Expression of thioredoxins and glutaredoxins in human hepatocellular carcinoma: correlation to cell proliferation, tumor size and metabolic syndrome.Int J Immunopathol Pharmacol. 2014 Apr-Jun;27(2):169-83. doi: 10.1177/039463201402700204.
3 GLRX5 mutations impair heme biosynthetic enzymes ALA synthase 2 and ferrochelatase in Human congenital sideroblastic anemia.Mol Genet Metab. 2019 Nov;128(3):342-351. doi: 10.1016/j.ymgme.2018.12.012. Epub 2019 Jan 7.
4 Advantages and pitfalls of an extended gene panel for investigating complex neurometabolic phenotypes.Brain. 2016 Nov 1;139(11):2844-2854. doi: 10.1093/brain/aww221.
5 The Gene Curation Coalition: A global effort to harmonize gene-disease evidence resources. Genet Med. 2022 Aug;24(8):1732-1742. doi: 10.1016/j.gim.2022.04.017. Epub 2022 May 4.
6 Regulation and tissue-specific expression of -aminolevulinic acid synthases in non-syndromic sideroblastic anemias and porphyrias.Mol Genet Metab. 2019 Nov;128(3):190-197. doi: 10.1016/j.ymgme.2019.01.015. Epub 2019 Jan 23.
7 The human counterpart of zebrafish shiraz shows sideroblastic-like microcytic anemia and iron overload. Blood. 2007 Aug 15;110(4):1353-8. doi: 10.1182/blood-2007-02-072520. Epub 2007 May 7.
8 Trends in incidence and resistance patterns of Staphylococcus aureus bacteremia().Infect Dis (Lond). 2018 Jan;50(1):52-58. doi: 10.1080/23744235.2017.1405276. Epub 2017 Nov 21.
9 Brain imaging and genetic risk in the pediatric population, part 1: inherited metabolic diseases.Neuroimaging Clin N Am. 2015 Feb;25(1):31-51. doi: 10.1016/j.nic.2014.09.004.
10 TLR-activated repression of Fe-S cluster biogenesis drives a metabolic shift and alters histone and tubulin acetylation.Blood Adv. 2018 May 22;2(10):1146-1156. doi: 10.1182/bloodadvances.2018015669.
11 Distinct Shift in Beta-Cell Glutaredoxin 5 Expression Is Mediated by Hypoxia and Lipotoxicity Both In Vivo and In Vitro.Front Endocrinol (Lausanne). 2018 Mar 12;9:84. doi: 10.3389/fendo.2018.00084. eCollection 2018.
12 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
13 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
14 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
15 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
16 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
17 Temporal changes in gene expression in the skin of patients treated with isotretinoin provide insight into its mechanism of action. Dermatoendocrinol. 2009 May;1(3):177-87.
18 New insights into BaP-induced toxicity: role of major metabolites in transcriptomics and contribution to hepatocarcinogenesis. Arch Toxicol. 2016 Jun;90(6):1449-58.
19 Low-dose Bisphenol A exposure alters the functionality and cellular environment in a human cardiomyocyte model. Environ Pollut. 2023 Oct 15;335:122359. doi: 10.1016/j.envpol.2023.122359. Epub 2023 Aug 9.
20 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.