General Information of Drug Off-Target (DOT) (ID: OTFH9M73)

DOT Name Tyrosine-protein phosphatase non-receptor type 11 (PTPN11)
Synonyms EC 3.1.3.48; Protein-tyrosine phosphatase 1D; PTP-1D; Protein-tyrosine phosphatase 2C; PTP-2C; SH-PTP2; SHP-2; Shp2; SH-PTP3
Gene Name PTPN11
Related Disease
LEOPARD syndrome 1 ( )
Noonan syndrome ( )
Noonan syndrome 1 ( )
Noonan syndrome and Noonan-related syndrome ( )
Noonan syndrome with multiple lentigines ( )
Metachondromatosis ( )
Cardiofaciocutaneous syndrome ( )
Costello syndrome ( )
UniProt ID
PTN11_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2SHP ; 3B7O ; 3MOW ; 3O5X ; 3TKZ ; 3TL0 ; 3ZM0 ; 3ZM1 ; 3ZM2 ; 3ZM3 ; 4DGP ; 4DGX ; 4GWF ; 4H1O ; 4H34 ; 4JE4 ; 4JEG ; 4JMG ; 4NWF ; 4NWG ; 4OHD ; 4OHE ; 4OHH ; 4OHI ; 4OHL ; 4PVG ; 4QSY ; 4RDD ; 5BK8 ; 5DF6 ; 5EHP ; 5EHR ; 5I6V ; 5IBM ; 5IBS ; 5X7B ; 5X94 ; 5XZR ; 6ATD ; 6BMR ; 6BMU ; 6BMV ; 6BMW ; 6BMX ; 6BMY ; 6BN5 ; 6CMP ; 6CMQ ; 6CMR ; 6CMS ; 6CRF ; 6CRG ; 6MD7 ; 6MD9 ; 6MDA ; 6MDB ; 6MDC ; 6MDD ; 6R5G ; 6WU8 ; 7EMN ; 7JVM ; 7JVN ; 7R75 ; 7R7D ; 7R7I ; 7R7L ; 7RCT ; 7TVJ ; 7VXG ; 7XHQ ; 8B5Y ; 8CBH ; 8GWW ; 8T6D ; 8T6G ; 8T7Q ; 8T8Q ; 8WFY
EC Number
3.1.3.48
Pfam ID
PF00017 ; PF00102
Sequence
MTSRRWFHPNITGVEAENLLLTRGVDGSFLARPSKSNPGDFTLSVRRNGAVTHIKIQNTG
DYYDLYGGEKFATLAELVQYYMEHHGQLKEKNGDVIELKYPLNCADPTSERWFHGHLSGK
EAEKLLTEKGKHGSFLVRESQSHPGDFVLSVRTGDDKGESNDGKSKVTHVMIRCQELKYD
VGGGERFDSLTDLVEHYKKNPMVETLGTVLQLKQPLNTTRINAAEIESRVRELSKLAETT
DKVKQGFWEEFETLQQQECKLLYSRKEGQRQENKNKNRYKNILPFDHTRVVLHDGDPNEP
VSDYINANIIMPEFETKCNNSKPKKSYIATQGCLQNTVNDFWRMVFQENSRVIVMTTKEV
ERGKSKCVKYWPDEYALKEYGVMRVRNVKESAAHDYTLRELKLSKVGQGNTERTVWQYHF
RTWPDHGVPSDPGGVLDFLEEVHHKQESIMDAGPVVVHCSAGIGRTGTFIVIDILIDIIR
EKGVDCDIDVPKTIQMVRSQRSGMVQTEAQYRFIYMAVQHYIETLQRRIEEEQKSKRKGH
EYTNIKYSLADQTSGDQSPLPPCTPTPPCAEMREDSARVYENVGLMQQQKSFR
Function
Acts downstream of various receptor and cytoplasmic protein tyrosine kinases to participate in the signal transduction from the cell surface to the nucleus. Positively regulates MAPK signal transduction pathway. Dephosphorylates GAB1, ARHGAP35 and EGFR. Dephosphorylates ROCK2 at 'Tyr-722' resulting in stimulation of its RhoA binding activity. Dephosphorylates CDC73. Dephosphorylates SOX9 on tyrosine residues, leading to inactivate SOX9 and promote ossification. Dephosphorylates tyrosine-phosphorylated NEDD9/CAS-L.
Tissue Specificity Widely expressed, with highest levels in heart, brain, and skeletal muscle.
KEGG Pathway
Ras sig.ling pathway (hsa04014 )
Phospholipase D sig.ling pathway (hsa04072 )
Efferocytosis (hsa04148 )
Axon guidance (hsa04360 )
C-type lectin receptor sig.ling pathway (hsa04625 )
JAK-STAT sig.ling pathway (hsa04630 )
.tural killer cell mediated cytotoxicity (hsa04650 )
T cell receptor sig.ling pathway (hsa04660 )
Leukocyte transendothelial migration (hsa04670 )
Neurotrophin sig.ling pathway (hsa04722 )
Adipocytokine sig.ling pathway (hsa04920 )
Insulin resistance (hsa04931 )
Epithelial cell sig.ling in Helicobacter pylori infection (hsa05120 )
Pathogenic Escherichia coli infection (hsa05130 )
Herpes simplex virus 1 infection (hsa05168 )
Proteoglycans in cancer (hsa05205 )
Chemical carcinogenesis - reactive oxygen species (hsa05208 )
Re.l cell carcinoma (hsa05211 )
Chronic myeloid leukemia (hsa05220 )
PD-L1 expression and PD-1 checkpoint pathway in cancer (hsa05235 )
Reactome Pathway
PI3K Cascade (R-HSA-109704 )
MAPK3 (ERK1) activation (R-HSA-110056 )
MAPK1 (ERK2) activation (R-HSA-112411 )
GPVI-mediated activation cascade (R-HSA-114604 )
Prolactin receptor signaling (R-HSA-1170546 )
PIP3 activates AKT signaling (R-HSA-1257604 )
Spry regulation of FGF signaling (R-HSA-1295596 )
Signaling by SCF-KIT (R-HSA-1433557 )
GAB1 signalosome (R-HSA-180292 )
Downstream signal transduction (R-HSA-186763 )
PECAM1 interactions (R-HSA-210990 )
Tie2 Signaling (R-HSA-210993 )
Constitutive Signaling by Aberrant PI3K in Cancer (R-HSA-2219530 )
Signaling by Leptin (R-HSA-2586552 )
Costimulation by the CD28 family (R-HSA-388841 )
CTLA4 inhibitory signaling (R-HSA-389513 )
PD-1 signaling (R-HSA-389948 )
Signal regulatory protein family interactions (R-HSA-391160 )
Netrin mediated repulsion signals (R-HSA-418886 )
Platelet sensitization by LDL (R-HSA-432142 )
Interleukin-3, Interleukin-5 and GM-CSF signaling (R-HSA-512988 )
PI-3K cascade (R-HSA-5654689 )
FRS-mediated FGFR1 signaling (R-HSA-5654693 )
PI-3K cascade (R-HSA-5654695 )
FRS-mediated FGFR2 signaling (R-HSA-5654700 )
FRS-mediated FGFR3 signaling (R-HSA-5654706 )
PI-3K cascade (R-HSA-5654710 )
FRS-mediated FGFR4 signaling (R-HSA-5654712 )
PI-3K cascade (R-HSA-5654720 )
Negative regulation of FGFR1 signaling (R-HSA-5654726 )
Negative regulation of FGFR2 signaling (R-HSA-5654727 )
Negative regulation of FGFR3 signaling (R-HSA-5654732 )
Negative regulation of FGFR4 signaling (R-HSA-5654733 )
PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling (R-HSA-6811558 )
Regulation of IFNG signaling (R-HSA-877312 )
RET signaling (R-HSA-8853659 )
Interleukin-20 family signaling (R-HSA-8854691 )
MET activates PTPN11 (R-HSA-8865999 )
Regulation of RUNX1 Expression and Activity (R-HSA-8934593 )
Interleukin-37 signaling (R-HSA-9008059 )
Activated NTRK2 signals through FRS2 and FRS3 (R-HSA-9028731 )
Interferon alpha/beta signaling (R-HSA-909733 )
Regulation of IFNA/IFNB signaling (R-HSA-912694 )
Activation of IRF3, IRF7 mediated by TBK1, IKK (IKBKE) (R-HSA-936964 )
FLT3 Signaling (R-HSA-9607240 )
STAT5 Activation (R-HSA-9645135 )
Signaling by CSF3 (G-CSF) (R-HSA-9674555 )
Signaling by CSF1 (M-CSF) in myeloid cells (R-HSA-9680350 )
STAT5 activation downstream of FLT3 ITD mutants (R-HSA-9702518 )
Signaling by FLT3 ITD and TKD mutants (R-HSA-9703648 )
SARS-CoV-2 activates/modulates innate and adaptive immune responses (R-HSA-9705671 )
Interleukin-6 signaling (R-HSA-1059683 )

Molecular Interaction Atlas (MIA) of This DOT

8 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
LEOPARD syndrome 1 DIS3WUB8 Definitive Autosomal dominant [1]
Noonan syndrome DIS7Q7DN Definitive Autosomal dominant [2]
Noonan syndrome 1 DIS7M92N Definitive Autosomal dominant [3]
Noonan syndrome and Noonan-related syndrome DISTATYK Definitive Autosomal dominant [4]
Noonan syndrome with multiple lentigines DIS014D0 Definitive Autosomal dominant [2]
Metachondromatosis DISUM6CO Strong Autosomal dominant [5]
Cardiofaciocutaneous syndrome DISZJKSC Disputed Autosomal dominant [2]
Costello syndrome DISXVJH3 Disputed Autosomal dominant [2]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Chondroitin sulfate DM0N19Y Phase 4 Tyrosine-protein phosphatase non-receptor type 11 (PTPN11) affects the binding of Chondroitin sulfate. [24]
------------------------------------------------------------------------------------
20 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Tyrosine-protein phosphatase non-receptor type 11 (PTPN11). [6]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Tyrosine-protein phosphatase non-receptor type 11 (PTPN11). [7]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Tyrosine-protein phosphatase non-receptor type 11 (PTPN11). [8]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Tyrosine-protein phosphatase non-receptor type 11 (PTPN11). [9]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Tyrosine-protein phosphatase non-receptor type 11 (PTPN11). [10]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Tyrosine-protein phosphatase non-receptor type 11 (PTPN11). [11]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Tyrosine-protein phosphatase non-receptor type 11 (PTPN11). [12]
Menadione DMSJDTY Approved Menadione affects the expression of Tyrosine-protein phosphatase non-receptor type 11 (PTPN11). [13]
Bortezomib DMNO38U Approved Bortezomib decreases the expression of Tyrosine-protein phosphatase non-receptor type 11 (PTPN11). [14]
Gemcitabine DMSE3I7 Approved Gemcitabine affects the expression of Tyrosine-protein phosphatase non-receptor type 11 (PTPN11). [15]
Resveratrol DM3RWXL Phase 3 Resveratrol increases the expression of Tyrosine-protein phosphatase non-receptor type 11 (PTPN11). [16]
Afimoxifene DMFORDT Phase 2 Afimoxifene decreases the activity of Tyrosine-protein phosphatase non-receptor type 11 (PTPN11). [17]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Tyrosine-protein phosphatase non-receptor type 11 (PTPN11). [18]
Geldanamycin DMS7TC5 Discontinued in Phase 2 Geldanamycin increases the expression of Tyrosine-protein phosphatase non-receptor type 11 (PTPN11). [20]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Tyrosine-protein phosphatase non-receptor type 11 (PTPN11). [21]
3R14S-OCHRATOXIN A DM2KEW6 Investigative 3R14S-OCHRATOXIN A increases the expression of Tyrosine-protein phosphatase non-receptor type 11 (PTPN11). [18]
Glyphosate DM0AFY7 Investigative Glyphosate decreases the expression of Tyrosine-protein phosphatase non-receptor type 11 (PTPN11). [22]
Tributylstannanyl DMHN7CB Investigative Tributylstannanyl increases the expression of Tyrosine-protein phosphatase non-receptor type 11 (PTPN11). [18]
Methyl Mercury Ion DM6YEW4 Investigative Methyl Mercury Ion increases the expression of Tyrosine-protein phosphatase non-receptor type 11 (PTPN11). [18]
Pervanadate DM873BS Investigative Pervanadate decreases the activity of Tyrosine-protein phosphatase non-receptor type 11 (PTPN11). [23]
------------------------------------------------------------------------------------
⏷ Show the Full List of 20 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Tyrosine-protein phosphatase non-receptor type 11 (PTPN11). [19]
------------------------------------------------------------------------------------

References

1 Syndromic Hearing Loss in Association with PTPN11-Related Disorder: The Experience of Cochlear Implantation in a Child with LEOPARD Syndrome. Clin Exp Otorhinolaryngol. 2013 Jun;6(2):99-102. doi: 10.3342/ceo.2013.6.2.99. Epub 2011 Feb 7.
2 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
3 PanelApp crowdsources expert knowledge to establish consensus diagnostic gene panels. Nat Genet. 2019 Nov;51(11):1560-1565. doi: 10.1038/s41588-019-0528-2.
4 PTPN11 (Shp2) mutations in LEOPARD syndrome have dominant negative, not activating, effects. J Biol Chem. 2006 Mar 10;281(10):6785-92. doi: 10.1074/jbc.M513068200. Epub 2005 Dec 23.
5 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
6 Effects of lithium and valproic acid on gene expression and phenotypic markers in an NT2 neurosphere model of neural development. PLoS One. 2013;8(3):e58822.
7 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
8 ATPR induces acute promyelocytic leukemia cells differentiation and growth arrest by blockade of SHP2/Rho/ROCK1 pathway. Toxicol Appl Pharmacol. 2020 Jul 15;399:115053. doi: 10.1016/j.taap.2020.115053. Epub 2020 May 15.
9 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
10 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
11 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
12 Arsenic trioxide induces apoptosis in NB-4, an acute promyelocytic leukemia cell line, through up-regulation of p73 via suppression of nuclear factor kappa B-mediated inhibition of p73 transcription and prevention of NF-kappaB-mediated induction of XIAP, cIAP2, BCL-XL and survivin. Med Oncol. 2010 Sep;27(3):833-42. doi: 10.1007/s12032-009-9294-9. Epub 2009 Sep 10.
13 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
14 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
15 Gene expression profiling of breast cancer cells in response to gemcitabine: NF-kappaB pathway activation as a potential mechanism of resistance. Breast Cancer Res Treat. 2007 Apr;102(2):157-72.
16 Resveratrol attenuates constitutive STAT3 and STAT5 activation through induction of PTP and SHP-2 tyrosine phosphatases and potentiates sorafenib-induced apoptosis in renal cell carcinoma. BMC Nephrol. 2016 Feb 25;17:19. doi: 10.1186/s12882-016-0233-7.
17 Regulation of growth hormone signaling by selective estrogen receptor modulators occurs through suppression of protein tyrosine phosphatases. Endocrinology. 2007 May;148(5):2417-23. doi: 10.1210/en.2006-1305. Epub 2007 Feb 1.
18 Inhibition of CXCL12-mediated chemotaxis of Jurkat cells by direct immunotoxicants. Arch Toxicol. 2016 Jul;90(7):1685-94. doi: 10.1007/s00204-015-1585-7. Epub 2015 Aug 28.
19 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
20 Identification of transcriptome signatures and biomarkers specific for potential developmental toxicants inhibiting human neural crest cell migration. Arch Toxicol. 2016 Jan;90(1):159-80.
21 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
22 Glyphosate-based herbicides at low doses affect canonical pathways in estrogen positive and negative breast cancer cell lines. PLoS One. 2019 Jul 11;14(7):e0219610. doi: 10.1371/journal.pone.0219610. eCollection 2019.
23 Osteosarcoma cell proliferation suppression via SHP-2-mediated inactivation of the JAK/STAT3 pathway by tubocapsenolide A. J Adv Res. 2021 Jun 11;34:79-91. doi: 10.1016/j.jare.2021.06.004. eCollection 2021 Dec.
24 Decline in arylsulfatase B expression increases EGFR expression by inhibiting the protein-tyrosine phosphatase SHP2 and activating JNK in prostate cells. J Biol Chem. 2018 Jul 13;293(28):11076-11087. doi: 10.1074/jbc.RA117.001244. Epub 2018 May 24.