General Information of Drug Off-Target (DOT) (ID: OTG7EDZL)

DOT Name Transforming growth factor beta activator LRRC32 (LRRC32)
Synonyms Garpin; Glycoprotein A repetitions predominant; GARP; Leucine-rich repeat-containing protein 32
Gene Name LRRC32
Related Disease
Cleft palate, proliferative retinopathy, and developmental delay ( )
UniProt ID
LRC32_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
6GFF; 8C7H
Pfam ID
PF13855 ; PF01462
Sequence
MRPQILLLLALLTLGLAAQHQDKVPCKMVDKKVSCQVLGLLQVPSVLPPDTETLDLSGNQ
LRSILASPLGFYTALRHLDLSTNEISFLQPGAFQALTHLEHLSLAHNRLAMATALSAGGL
GPLPRVTSLDLSGNSLYSGLLERLLGEAPSLHTLSLAENSLTRLTRHTFRDMPALEQLDL
HSNVLMDIEDGAFEGLPRLTHLNLSRNSLTCISDFSLQQLRVLDLSCNSIEAFQTASQPQ
AEFQLTWLDLRENKLLHFPDLAALPRLIYLNLSNNLIRLPTGPPQDSKGIHAPSEGWSAL
PLSAPSGNASGRPLSQLLNLDLSYNEIELIPDSFLEHLTSLCFLNLSRNCLRTFEARRLG
SLPCLMLLDLSHNALETLELGARALGSLRTLLLQGNALRDLPPYTFANLASLQRLNLQGN
RVSPCGGPDEPGPSGCVAFSGITSLRSLSLVDNEIELLRAGAFLHTPLTELDLSSNPGLE
VATGALGGLEASLEVLALQGNGLMVLQVDLPCFICLKRLNLAENRLSHLPAWTQAVSLEV
LDLRNNSFSLLPGSAMGGLETSLRRLYLQGNPLSCCGNGWLAAQLHQGRVDVDATQDLIC
RFSSQEEVSLSHVRPEDCEKGGLKNINLIIILTFILVSAILLTTLAACCCVRRQKFNQQY
KA
Function
Key regulator of transforming growth factor beta (TGFB1, TGFB2 and TGFB3) that controls TGF-beta activation by maintaining it in a latent state during storage in extracellular space. Associates specifically via disulfide bonds with the Latency-associated peptide (LAP), which is the regulatory chain of TGF-beta, and regulates integrin-dependent activation of TGF-beta. Able to outcompete LTBP1 for binding to LAP regulatory chain of TGF-beta. Controls activation of TGF-beta-1 (TGFB1) on the surface of activated regulatory T-cells (Tregs). Required for epithelial fusion during palate development by regulating activation of TGF-beta-3 (TGFB3).
Tissue Specificity Preferentially expressed in regulatory T-cells (Tregs).
KEGG Pathway
TGF-beta sig.ling pathway (hsa04350 )

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Cleft palate, proliferative retinopathy, and developmental delay DIS8TX4M Strong Autosomal recessive [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
10 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Transforming growth factor beta activator LRRC32 (LRRC32). [2]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Transforming growth factor beta activator LRRC32 (LRRC32). [3]
Doxorubicin DMVP5YE Approved Doxorubicin affects the expression of Transforming growth factor beta activator LRRC32 (LRRC32). [4]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of Transforming growth factor beta activator LRRC32 (LRRC32). [5]
Dexamethasone DMMWZET Approved Dexamethasone decreases the expression of Transforming growth factor beta activator LRRC32 (LRRC32). [6]
Cytarabine DMZD5QR Approved Cytarabine decreases the expression of Transforming growth factor beta activator LRRC32 (LRRC32). [7]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Transforming growth factor beta activator LRRC32 (LRRC32). [8]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Transforming growth factor beta activator LRRC32 (LRRC32). [9]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Transforming growth factor beta activator LRRC32 (LRRC32). [10]
Acetaldehyde DMJFKG4 Investigative Acetaldehyde increases the expression of Transforming growth factor beta activator LRRC32 (LRRC32). [11]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 Drug(s)

References

1 Glycoprotein A repetitions predominant (GARP) positively regulates transforming growth factor (TGF) 3 and is essential for mouse palatogenesis. J Biol Chem. 2017 Nov 3;292(44):18091-18097. doi: 10.1074/jbc.M117.797613. Epub 2017 Sep 14.
2 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
3 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
4 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
5 Dose- and time-dependent effects of phenobarbital on gene expression profiling in human hepatoma HepaRG cells. Toxicol Appl Pharmacol. 2009 Feb 1;234(3):345-60.
6 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
7 Cytosine arabinoside induces ectoderm and inhibits mesoderm expression in human embryonic stem cells during multilineage differentiation. Br J Pharmacol. 2011 Apr;162(8):1743-56.
8 Genome-wide transcriptional and functional analysis of human T lymphocytes treated with benzo[alpha]pyrene. Int J Mol Sci. 2018 Nov 17;19(11).
9 Bisphenol A and bisphenol S induce distinct transcriptional profiles in differentiating human primary preadipocytes. PLoS One. 2016 Sep 29;11(9):e0163318.
10 Identification of transcriptome signatures and biomarkers specific for potential developmental toxicants inhibiting human neural crest cell migration. Arch Toxicol. 2016 Jan;90(1):159-80.
11 Transcriptome profile analysis of saturated aliphatic aldehydes reveals carbon number-specific molecules involved in pulmonary toxicity. Chem Res Toxicol. 2014 Aug 18;27(8):1362-70.