General Information of Drug Off-Target (DOT) (ID: OTK3EJFD)

DOT Name Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating (NSDHL)
Synonyms EC 1.1.1.170; Protein H105e3
Gene Name NSDHL
Related Disease
CHILD syndrome ( )
CK syndrome ( )
Chondrodysplasia punctata ( )
Head-neck squamous cell carcinoma ( )
Incontinentia pigmenti ( )
X-linked chondrodysplasia punctata ( )
X-linked chondrodysplasia punctata 2 ( )
Intellectual disability ( )
Melanocytic nevus ( )
UniProt ID
NSDHL_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
6JKG; 6JKH
EC Number
1.1.1.170
Pfam ID
PF01073
Sequence
MEPAVSEPMRDQVARTHLTEDTPKVNADIEKVNQNQAKRCTVIGGSGFLGQHMVEQLLAR
GYAVNVFDIQQGFDNPQVRFFLGDLCSRQDLYPALKGVNTVFHCASPPPSSNNKELFYRV
NYIGTKNVIETCKEAGVQKLILTSSASVIFEGVDIKNGTEDLPYAMKPIDYYTETKILQE
RAVLGANDPEKNFLTTAIRPHGIFGPRDPQLVPILIEAARNGKMKFVIGNGKNLVDFTFV
ENVVHGHILAAEQLSRDSTLGGKAFHITNDEPIPFWTFLSRILTGLNYEAPKYHIPYWVA
YYLALLLSLLVMVISPVIQLQPTFTPMRVALAGTFHYYSCERAKKAMGYQPLVTMDDAME
RTVQSFRHLRRVK
Function
Catalyzes the NAD(P)(+)-dependent oxidative decarboxylation of the C4 methyl groups of 4-alpha-carboxysterols in post-squalene cholesterol biosynthesis. Also plays a role in the regulation of the endocytic trafficking of EGFR.
Tissue Specificity Brain, heart, liver, lung, kidney, skin and placenta.
KEGG Pathway
Steroid biosynthesis (hsa00100 )
Metabolic pathways (hsa01100 )
Reactome Pathway
Cholesterol biosynthesis (R-HSA-191273 )
BioCyc Pathway
MetaCyc:HS07423-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

9 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
CHILD syndrome DIS9F5U7 Definitive X-linked [1]
CK syndrome DISN95GO Definitive X-linked [2]
Chondrodysplasia punctata DISERVGO Strong Biomarker [3]
Head-neck squamous cell carcinoma DISF7P24 Strong Biomarker [4]
Incontinentia pigmenti DIS0ALLE Strong Biomarker [5]
X-linked chondrodysplasia punctata DISU9RLP Strong Biomarker [3]
X-linked chondrodysplasia punctata 2 DISI20G2 Strong Genetic Variation [6]
Intellectual disability DISMBNXP moderate Genetic Variation [7]
Melanocytic nevus DISYS32D Disputed Genetic Variation [1]
------------------------------------------------------------------------------------
⏷ Show the Full List of 9 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 2 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Dasatinib DMJV2EK Approved Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating (NSDHL) decreases the response to substance of Dasatinib. [4]
LY294002 DMY1AFS Phase 1 Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating (NSDHL) decreases the response to substance of LY294002. [4]
------------------------------------------------------------------------------------
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating (NSDHL). [8]
------------------------------------------------------------------------------------
18 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating (NSDHL). [9]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating (NSDHL). [10]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating (NSDHL). [11]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating (NSDHL). [12]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating (NSDHL). [13]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating (NSDHL). [14]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating (NSDHL). [15]
Testosterone DM7HUNW Approved Testosterone decreases the expression of Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating (NSDHL). [16]
Zoledronate DMIXC7G Approved Zoledronate increases the expression of Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating (NSDHL). [17]
Progesterone DMUY35B Approved Progesterone increases the expression of Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating (NSDHL). [18]
Dexamethasone DMMWZET Approved Dexamethasone increases the expression of Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating (NSDHL). [19]
Isotretinoin DM4QTBN Approved Isotretinoin decreases the expression of Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating (NSDHL). [20]
Fluoxetine DM3PD2C Approved Fluoxetine increases the expression of Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating (NSDHL). [21]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating (NSDHL). [23]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide decreases the expression of Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating (NSDHL). [24]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating (NSDHL). [25]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating (NSDHL). [26]
PP-242 DM2348V Investigative PP-242 decreases the expression of Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating (NSDHL). [27]
------------------------------------------------------------------------------------
⏷ Show the Full List of 18 Drug(s)
1 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
DNCB DMDTVYC Phase 2 DNCB affects the binding of Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating (NSDHL). [22]
------------------------------------------------------------------------------------

References

1 Mutations in the NSDHL gene, encoding a 3beta-hydroxysteroid dehydrogenase, cause CHILD syndrome. Am J Med Genet. 2000 Feb 14;90(4):339-46.
2 Characterization of a new X-linked mental retardation syndrome with microcephaly, cortical malformation, and thin habitus. Am J Med Genet A. 2009 Nov;149A(11):2469-78. doi: 10.1002/ajmg.a.33071.
3 Placental defects are associated with male lethality in bare patches and striated embryos deficient in the NAD(P)H Steroid Dehydrogenase-like (NSDHL) Enzyme.Mol Genet Metab. 2005 Jan;84(1):48-60. doi: 10.1016/j.ymgme.2004.08.007.
4 Targeting C4-demethylating genes in the cholesterol pathway sensitizes cancer cells to EGF receptor inhibitors via increased EGF receptor degradation. Cancer Discov. 2013 Jan;3(1):96-111. doi: 10.1158/2159-8290.CD-12-0031. Epub 2012 Nov 2.
5 The Str mouse as a model for incontinentia pigmenti.Pflugers Arch. 2000;440(5 Suppl):R53-4.
6 Male CDPX2 patient with EBP mosaicism and asymmetrically lateralized skin lesions with strict midline demarcation.Am J Med Genet A. 2019 Jul;179(7):1315-1318. doi: 10.1002/ajmg.a.61159. Epub 2019 Apr 29.
7 Hypomorphic temperature-sensitive alleles of NSDHL cause CK syndrome. Am J Hum Genet. 2010 Dec 10;87(6):905-14. doi: 10.1016/j.ajhg.2010.11.004.
8 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
9 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
10 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
11 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
12 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
13 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
14 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
15 Proteomics-based identification of differentially abundant proteins from human keratinocytes exposed to arsenic trioxide. J Proteomics Bioinform. 2014 Jul;7(7):166-178.
16 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384. doi: 10.1016/j.taap.2020.115384. Epub 2020 Dec 25.
17 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
18 Coordinate up-regulation of TMEM97 and cholesterol biosynthesis genes in normal ovarian surface epithelial cells treated with progesterone: implications for pathogenesis of ovarian cancer. BMC Cancer. 2007 Dec 11;7:223.
19 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
20 Temporal changes in gene expression in the skin of patients treated with isotretinoin provide insight into its mechanism of action. Dermatoendocrinol. 2009 May;1(3):177-87.
21 Screening autism-associated environmental factors in differentiating human neural progenitors with fractional factorial design-based transcriptomics. Sci Rep. 2023 Jun 29;13(1):10519. doi: 10.1038/s41598-023-37488-0.
22 Proteomic analysis of the cellular response to a potent sensitiser unveils the dynamics of haptenation in living cells. Toxicology. 2020 Dec 1;445:152603. doi: 10.1016/j.tox.2020.152603. Epub 2020 Sep 28.
23 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297. doi: 10.1016/j.fct.2020.111297. Epub 2020 Mar 28.
24 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
25 Alternatives for the worse: Molecular insights into adverse effects of bisphenol a and substitutes during human adipocyte differentiation. Environ Int. 2021 Nov;156:106730. doi: 10.1016/j.envint.2021.106730. Epub 2021 Jun 27.
26 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
27 Marine biogenics in sea spray aerosols interact with the mTOR signaling pathway. Sci Rep. 2019 Jan 24;9(1):675.
28 Targeting C4-demethylating genes in the cholesterol pathway sensitizes cancer cells to EGF receptor inhibitors via increased EGF receptor degradation. Cancer Discov. 2013 Jan;3(1):96-111. doi: 10.1158/2159-8290.CD-12-0031. Epub 2012 Nov 2.