General Information of Drug Off-Target (DOT) (ID: OTMUZ7GH)

DOT Name Ribitol 5-phosphate transferase FKRP (FKRP)
Synonyms EC 2.7.8.-; Fukutin-related protein; Ribitol-5-phosphate transferase
Gene Name FKRP
Related Disease
Autosomal recessive limb-girdle muscular dystrophy type 2I ( )
Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A5 ( )
Muscular dystrophy-dystroglycanopathy type B5 ( )
Myopathy caused by variation in FKRP ( )
Autosomal recessive limb-girdle muscular dystrophy type 2A ( )
Becker muscular dystrophy ( )
Bethlem myopathy ( )
Campomelic dysplasia ( )
Cardiac failure ( )
Cardiomyopathy ( )
Central core myopathy ( )
Cobblestone lissencephaly ( )
Congenital fiber-type disproportion myopathy ( )
Congenital muscular dystrophy ( )
Congenital myopathy ( )
Congenital nervous system disorder ( )
Congestive heart failure ( )
Craniometaphyseal dysplasia, autosomal dominant ( )
Dilated cardiomyopathy 1A ( )
Intellectual disability ( )
Limb-girdle muscular dystrophy ( )
Limb-girdle muscular dystrophy due to POMK deficiency ( )
Multiminicore myopathy ( )
Muscular dystrophy-dystroglycanopathy (congenital with intellectual disability), type B2 ( )
Muscular dystrophy-dystroglycanopathy (congenital with intellectual disability), type B3 ( )
Myopathy ( )
Myositis disease ( )
Nasopharyngeal carcinoma ( )
Nemaline myopathy ( )
Neuromuscular disease ( )
Type-1 diabetes ( )
Ventricular tachycardia ( )
Autosomal recessive limb-girdle muscular dystrophy type 2D ( )
Autosomal recessive limb-girdle muscular dystrophy type 2H ( )
Congenital muscular dystrophy with intellectual disability ( )
Muscle-eye-brain disease ( )
Muscular dystrophy-dystroglycanopathy, type A ( )
Obsolete congenital muscular dystrophy with cerebellar involvement ( )
Obsolete congenital muscular dystrophy without intellectual disability ( )
Small lymphocytic lymphoma ( )
Dilated cardiomyopathy ( )
Muscular dystrophy ( )
Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 4 ( )
UniProt ID
FKRP_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
6KAJ; 6KAK; 6KAL; 6KAM; 6KAN; 6L7S; 6L7T; 6L7U
EC Number
2.7.8.-
Pfam ID
PF04991
Sequence
MRLTRCQAALAAAITLNLLVLFYVSWLQHQPRNSRARGPRRASAAGPRVTVLVREFEAFD
NAVPELVDSFLQQDPAQPVVVAADTLPYPPLALPRIPNVRLALLQPALDRPAAASRPETY
VATEFVALVPDGARAEAPGLLERMVEALRAGSARLVAAPVATANPARCLALNVSLREWTA
RYGAAPAAPRCDALDGDAVVLLRARDLFNLSAPLARPVGTSLFLQTALRGWAVQLLDLTF
AAARQPPLATAHARWKAEREGRARRAALLRALGIRLVSWEGGRLEWFGCNKETTRCFGTV
VGDTPAYLYEERWTPPCCLRALRETARYVVGVLEAAGVRYWLEGGSLLGAARHGDIIPWD
YDVDLGIYLEDVGNCEQLRGAEAGSVVDERGFVWEKAVEGDFFRVQYSESNHLHVDLWPF
YPRNGVMTKDTWLDHRQDVEFPEHFLQPLVPLPFAGFVAQAPNNYRRFLELKFGPGVIEN
PQYPNPALLSLTGSG
Function
Catalyzes the transfer of a ribitol 5-phosphate from CDP-L-ribitol to the ribitol 5-phosphate previously attached by FKTN/fukutin to the phosphorylated O-mannosyl trisaccharide (N-acetylgalactosamine-beta-3-N-acetylglucosamine-beta-4-(phosphate-6-)mannose), a carbohydrate structure present in alpha-dystroglycan (DAG1). This constitutes the second step in the formation of the ribose 5-phosphate tandem repeat which links the phosphorylated O-mannosyl trisaccharide to the ligand binding moiety composed of repeats of 3-xylosyl-alpha-1,3-glucuronic acid-beta-1.
Tissue Specificity Expressed in the retina (at protein level) . Expressed predominantly in skeletal muscle, placenta, and heart and relatively weakly in brain, lung, liver, kidney, and pancreas .
KEGG Pathway
Mannose type O-glycan biosynthesis (hsa00515 )
Metabolic pathways (hsa01100 )
BioCyc Pathway
MetaCyc:ENSG00000181027-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

43 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Autosomal recessive limb-girdle muscular dystrophy type 2I DISINP9B Definitive Autosomal recessive [1]
Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A5 DISLXI1U Definitive Autosomal recessive [2]
Muscular dystrophy-dystroglycanopathy type B5 DISH7DO5 Definitive Autosomal recessive [3]
Myopathy caused by variation in FKRP DISZKUF8 Definitive Autosomal recessive [3]
Autosomal recessive limb-girdle muscular dystrophy type 2A DISIHX4S Strong Biomarker [4]
Becker muscular dystrophy DIS5IYHL Strong Biomarker [5]
Bethlem myopathy DISVF5K2 Strong Biomarker [6]
Campomelic dysplasia DISVTW53 Strong Genetic Variation [7]
Cardiac failure DISDC067 Strong Genetic Variation [8]
Cardiomyopathy DISUPZRG Strong Biomarker [9]
Central core myopathy DIS18AZZ Strong Biomarker [10]
Cobblestone lissencephaly DIS56826 Strong Genetic Variation [11]
Congenital fiber-type disproportion myopathy DISU9T2M Strong Biomarker [10]
Congenital muscular dystrophy DISKY7OY Strong Genetic Variation [12]
Congenital myopathy DISLSK9G Strong Biomarker [10]
Congenital nervous system disorder DIS2BIP8 Strong Genetic Variation [13]
Congestive heart failure DIS32MEA Strong Genetic Variation [8]
Craniometaphyseal dysplasia, autosomal dominant DISU12OO Strong Genetic Variation [7]
Dilated cardiomyopathy 1A DIS0RK9Z Strong Biomarker [14]
Intellectual disability DISMBNXP Strong Biomarker [15]
Limb-girdle muscular dystrophy DISI9Y1Z Strong Genetic Variation [16]
Limb-girdle muscular dystrophy due to POMK deficiency DISM63SY Strong Biomarker [10]
Multiminicore myopathy DISE6VYN Strong Biomarker [10]
Muscular dystrophy-dystroglycanopathy (congenital with intellectual disability), type B2 DIS2BGID Strong Biomarker [10]
Muscular dystrophy-dystroglycanopathy (congenital with intellectual disability), type B3 DISSP7OL Strong Biomarker [10]
Myopathy DISOWG27 Strong Biomarker [17]
Myositis disease DISCIXF0 Strong Genetic Variation [18]
Nasopharyngeal carcinoma DISAOTQ0 Strong Genetic Variation [19]
Nemaline myopathy DIS5IYLY Strong Biomarker [10]
Neuromuscular disease DISQTIJZ Strong Genetic Variation [4]
Type-1 diabetes DIS7HLUB Strong Genetic Variation [20]
Ventricular tachycardia DISIBXJ3 Strong Biomarker [14]
Autosomal recessive limb-girdle muscular dystrophy type 2D DISRD6EW moderate Biomarker [21]
Autosomal recessive limb-girdle muscular dystrophy type 2H DISZ100M moderate Genetic Variation [22]
Congenital muscular dystrophy with intellectual disability DISWHF75 Supportive Autosomal recessive [23]
Muscle-eye-brain disease DISJUOQB Supportive Autosomal recessive [24]
Muscular dystrophy-dystroglycanopathy, type A DISZTBC4 Supportive Autosomal recessive [25]
Obsolete congenital muscular dystrophy with cerebellar involvement DIS8CGS1 Supportive Autosomal recessive [23]
Obsolete congenital muscular dystrophy without intellectual disability DISGKCTZ Supportive Autosomal recessive [23]
Small lymphocytic lymphoma DIS30POX Disputed Genetic Variation [26]
Dilated cardiomyopathy DISX608J Limited Genetic Variation [27]
Muscular dystrophy DISJD6P7 Limited Biomarker [12]
Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 4 DISGM0K5 Limited Genetic Variation [28]
------------------------------------------------------------------------------------
⏷ Show the Full List of 43 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Ribitol 5-phosphate transferase FKRP (FKRP). [29]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Ribitol 5-phosphate transferase FKRP (FKRP). [35]
------------------------------------------------------------------------------------
7 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Ribitol 5-phosphate transferase FKRP (FKRP). [30]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Ribitol 5-phosphate transferase FKRP (FKRP). [31]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Ribitol 5-phosphate transferase FKRP (FKRP). [32]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Ribitol 5-phosphate transferase FKRP (FKRP). [33]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Ribitol 5-phosphate transferase FKRP (FKRP). [34]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Ribitol 5-phosphate transferase FKRP (FKRP). [36]
GALLICACID DM6Y3A0 Investigative GALLICACID increases the expression of Ribitol 5-phosphate transferase FKRP (FKRP). [37]
------------------------------------------------------------------------------------
⏷ Show the Full List of 7 Drug(s)

References

1 The Gene Curation Coalition: A global effort to harmonize gene-disease evidence resources. Genet Med. 2022 Aug;24(8):1732-1742. doi: 10.1016/j.gim.2022.04.017. Epub 2022 May 4.
2 Congenital muscular dystrophy with secondary merosin deficiency and normal brain MRI: a novel entity?. Neuropediatrics. 2000 Aug;31(4):186-9. doi: 10.1055/s-2000-7460.
3 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
4 Autosomal recessive limb-girdle muscular dystrophies in the Czech Republic.BMC Neurol. 2014 Aug 19;14:154. doi: 10.1186/s12883-014-0154-7.
5 Calpain 3 is important for muscle regeneration: evidence from patients with limb girdle muscular dystrophies.BMC Musculoskelet Disord. 2012 Mar 23;13:43. doi: 10.1186/1471-2474-13-43.
6 Reliability and accuracy of skeletal muscle imaging in limb-girdle muscular dystrophies.Neurology. 2012 Oct 16;79(16):1716-23. doi: 10.1212/WNL.0b013e31826e9b73. Epub 2012 Oct 3.
7 Overexpression of Mutant FKRP Restores Functional Glycosylation and Improves Dystrophic Phenotype in FKRP Mutant Mice.Mol Ther Nucleic Acids. 2018 Jun 1;11:216-227. doi: 10.1016/j.omtn.2018.02.008. Epub 2018 Mar 6.
8 The phenotype of limb-girdle muscular dystrophy type 2I.Neurology. 2003 Apr 22;60(8):1246-51. doi: 10.1212/01.wnl.0000058902.88181.3d.
9 Muscle and heart function restoration in a limb girdle muscular dystrophy 2I (LGMD2I) mouse model by systemic FKRP gene delivery.Mol Ther. 2014 Nov;22(11):1890-9. doi: 10.1038/mt.2014.141. Epub 2014 Jul 22.
10 Degree of Cajal-Retzius Cell Mislocalization Correlates with the Severity of Structural Brain Defects in Mouse Models of Dystroglycanopathy.Brain Pathol. 2016 Jul;26(4):465-78. doi: 10.1111/bpa.12306. Epub 2015 Oct 12.
11 Cobblestone lissencephaly: neuropathological subtypes and correlations with genes of dystroglycanopathies.Brain. 2012 Feb;135(Pt 2):469-82. doi: 10.1093/brain/awr357. Epub 2012 Feb 9.
12 Skeletal, cardiac, and respiratory muscle function and histopathology in the P448Lneo- mouse model of FKRP-deficient muscular dystrophy.Skelet Muscle. 2018 Apr 6;8(1):13. doi: 10.1186/s13395-018-0158-x.
13 New FKRP mutations causing congenital muscular dystrophy associated with mental retardation and central nervous system abnormalities. Identification of a founder mutation in Tunisian families.Neurogenetics. 2004 Feb;5(1):27-34. doi: 10.1007/s10048-003-0165-9. Epub 2003 Dec 2.
14 Ion Channel Dysfunctions in Dilated Cardiomyopathy in Limb-Girdle Muscular Dystrophy.Circ Genom Precis Med. 2018 Mar;11(3):e001893. doi: 10.1161/CIRCGEN.117.001893.
15 Fukutin-related protein mutations that cause congenital muscular dystrophy result in ER-retention of the mutant protein in cultured cells.Hum Mol Genet. 2005 Jan 15;14(2):295-305. doi: 10.1093/hmg/ddi026. Epub 2004 Dec 1.
16 Demembranated skeletal and cardiac fibers produce less force with altered cross-bridge kinetics in a mouse model for limb-girdle muscular dystrophy 2i.Am J Physiol Cell Physiol. 2019 Aug 1;317(2):C226-C234. doi: 10.1152/ajpcell.00524.2018. Epub 2019 May 15.
17 Cytidine Diphosphate-Ribitol Analysis for Diagnostics and Treatment Monitoring of Cytidine Diphosphate-l-Ribitol Pyrophosphorylase A Muscular Dystrophy.Clin Chem. 2019 Oct;65(10):1295-1306. doi: 10.1373/clinchem.2019.305391. Epub 2019 Aug 2.
18 Congenital muscular dystrophy with muscle inflammation alpha dystroglycan glycosylation defect and no mutation in FKRP gene.J Neurol Sci. 2006 Apr 15;243(1-2):47-51. doi: 10.1016/j.jns.2005.11.024. Epub 2006 Jan 4.
19 A genome-wide association study of nasopharyngeal carcinoma identifies three new susceptibility loci.Nat Genet. 2010 Jul;42(7):599-603. doi: 10.1038/ng.601. Epub 2010 May 30.
20 A genome-wide meta-analysis of six type 1 diabetes cohorts identifies multiple associated loci.PLoS Genet. 2011 Sep;7(9):e1002293. doi: 10.1371/journal.pgen.1002293. Epub 2011 Sep 29.
21 Diagnostic value of muscle MRI in differentiating LGMD2I from other LGMDs.J Neurol. 2005 May;252(5):538-47. doi: 10.1007/s00415-005-0684-4. Epub 2005 Feb 23.
22 Autosomal recessive limb-girdle and Miyoshi muscular dystrophies in the Netherlands: The clinical and molecular spectrum of 244 patients.Clin Genet. 2019 Aug;96(2):126-133. doi: 10.1111/cge.13544. Epub 2019 May 6.
23 Dystroglycanopathies: coming into focus. Curr Opin Genet Dev. 2011 Jun;21(3):278-85. doi: 10.1016/j.gde.2011.02.001. Epub 2011 Mar 11.
24 Mutations in the FKRP gene can cause muscle-eye-brain disease and Walker-Warburg syndrome. J Med Genet. 2004 May;41(5):e61. doi: 10.1136/jmg.2003.013870.
25 A homozygous FKRP start codon mutation is associated with Walker-Warburg syndrome, the severe end of the clinical spectrum. Clin Genet. 2010 Sep;78(3):275-81. doi: 10.1111/j.1399-0004.2010.01384.x. Epub 2010 Feb 11.
26 Common variants at 2q37.3, 8q24.21, 15q21.3 and 16q24.1 influence chronic lymphocytic leukemia risk.Nat Genet. 2010 Feb;42(2):132-6. doi: 10.1038/ng.510. Epub 2010 Jan 10.
27 Heart transplantation in a child with LGMD2I presenting as isolated dilated cardiomyopathy.Neuromuscul Disord. 2008 Feb;18(2):153-5. doi: 10.1016/j.nmd.2007.09.013. Epub 2007 Dec 3.
28 Novel FKRP mutations in a Japanese MDC1C sibship clinically diagnosed with Fukuyama congenital muscular dystrophy.Brain Dev. 2017 Nov;39(10):869-872. doi: 10.1016/j.braindev.2017.05.013. Epub 2017 Jun 17.
29 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
30 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
31 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
32 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
33 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
34 Minimal peroxide exposure of neuronal cells induces multifaceted adaptive responses. PLoS One. 2010 Dec 17;5(12):e14352. doi: 10.1371/journal.pone.0014352.
35 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
36 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
37 Gene expression profile analysis of gallic acid-induced cell death process. Sci Rep. 2021 Aug 18;11(1):16743. doi: 10.1038/s41598-021-96174-1.