General Information of Drug Combination (ID: DC2BNAX)

Drug Combination Name
Methimazole Propranolol
Indication
Disease Entry Status REF
Graves Disease Phase 4 [1]
Component Drugs Methimazole   DM25FL8 Propranolol   DM79NTF
Small molecular drug Small molecular drug
2D MOL 2D MOL
3D MOL 3D MOL

Molecular Interaction Atlas of This Drug Combination

Molecular Interaction Atlas (MIA)
Indication(s) of Methimazole
Disease Entry ICD 11 Status REF
Hyperthyroidism 5A02 Approved [2]
Methimazole Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Thyroid peroxidase (TPO) TT52XDZ PERT_HUMAN Inhibitor [6]
------------------------------------------------------------------------------------
Methimazole Interacts with 1 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Dimethylaniline oxidase 2 (FMO2) DEIASEZ FMO2_HUMAN Metabolism [7]
------------------------------------------------------------------------------------
Methimazole Interacts with 43 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Catalase (CAT) OTHEBX9R CATA_HUMAN Decreases Expression [8]
Serum paraoxonase/arylesterase 1 (PON1) OTD0Z2XO PON1_HUMAN Increases Activity [9]
T-box transcription factor TBX3 (TBX3) OTM64N7K TBX3_HUMAN Increases Expression [5]
Trans-Golgi network integral membrane protein 2 (TGOLN2) OTM647IV TGON2_HUMAN Increases Expression [5]
Bile salt export pump (ABCB11) OTRU7THO ABCBB_HUMAN Increases Expression [10]
Haptoglobin (HP) OTGUGAF9 HPT_HUMAN Increases Expression [10]
Thyrotropin subunit beta (TSHB) OTFDI39D TSHB_HUMAN Increases Expression [11]
Albumin (ALB) OTVMM513 ALBU_HUMAN Decreases Expression [12]
Alpha-fetoprotein (AFP) OT9GG3ZI FETA_HUMAN Increases Expression [12]
3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) OTRT3F3U HMDH_HUMAN Decreases Expression [12]
Insulin-like growth factor I (IGF1) OTIIZR61 IGF1_HUMAN Decreases Expression [12]
Interleukin-6 (IL6) OTUOSCCU IL6_HUMAN Increases Expression [10]
Thyroid peroxidase (TPO) OTJJLL20 PERT_HUMAN Decreases Activity [13]
Insulin-like growth factor 1 receptor (IGF1R) OTXJIF13 IGF1R_HUMAN Decreases Expression [12]
Interleukin-8 (CXCL8) OTS7T5VH IL8_HUMAN Increases Expression [10]
Microsomal glutathione S-transferase 1 (MGST1) OTGN1KVZ MGST1_HUMAN Increases Expression [10]
Proliferating cell nuclear antigen (PCNA) OTHZ1RIA PCNA_HUMAN Decreases Expression [12]
C-C motif chemokine 2 (CCL2) OTAD2HEL CCL2_HUMAN Increases Expression [5]
Thyrotropin receptor (TSHR) OT0BC8LB TSHR_HUMAN Decreases Expression [14]
Galectin-3 (LGALS3) OTYQT0ZI LEG3_HUMAN Increases Expression [10]
Integrin beta-5 (ITGB5) OT21MF51 ITB5_HUMAN Increases Expression [5]
Mitogen-activated protein kinase 3 (MAPK3) OTCYKGKO MK03_HUMAN Decreases Phosphorylation [12]
Mitogen-activated protein kinase 1 (MAPK1) OTH85PI5 MK01_HUMAN Decreases Phosphorylation [12]
RAC-alpha serine/threonine-protein kinase (AKT1) OT8H2YY7 AKT1_HUMAN Decreases Phosphorylation [12]
RAC-beta serine/threonine-protein kinase (AKT2) OTBB632K AKT2_HUMAN Decreases Expression [12]
Hepatocyte nuclear factor 4-alpha (HNF4A) OTY1TOAB HNF4A_HUMAN Increases Expression [12]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Increases Expression [12]
Glutamate--cysteine ligase catalytic subunit (GCLC) OTESDI4D GSH1_HUMAN Increases Expression [10]
Fatty acid synthase (FASN) OTFII9KG FAS_HUMAN Decreases Expression [12]
Type I iodothyronine deiodinase (DIO1) OTFYLYJ0 IOD1_HUMAN Increases Expression [14]
Hepcidin (HAMP) OT607RBL HEPC_HUMAN Decreases Expression [10]
Low-density lipoprotein receptor-related protein 2 (LRP2) OTZ6W681 LRP2_HUMAN Increases Expression [14]
DNA-binding protein inhibitor ID-2 (ID2) OT0U1D53 ID2_HUMAN Increases Expression [5]
DNA-binding protein inhibitor ID-3 (ID3) OTUULW5Z ID3_HUMAN Increases Expression [5]
Krueppel-like factor 9 (KLF9) OTBFEJRQ KLF9_HUMAN Increases Expression [5]
Consortin (CNST) OTOUCB98 CNST_HUMAN Increases Expression [5]
Sodium/iodide cotransporter (SLC5A5) OTU7E9G7 SC5A5_HUMAN Increases Expression [14]
Angiotensin-converting enzyme 2 (ACE2) OTTRZGU7 ACE2_HUMAN Decreases Expression [15]
PTB domain-containing engulfment adapter protein 1 (GULP1) OT1WMVDH GULP1_HUMAN Increases Expression [5]
Flavin-containing monooxygenase 3 (FMO3) OT1G2EV3 FMO3_HUMAN Increases Metabolism [16]
Cytochrome P450 2A6 (CYP2A6) OT52TWG3 CP2A6_HUMAN Increases Metabolism [17]
Flavin-containing monooxygenase 1 (FMO1) OTTHSQKP FMO1_HUMAN Increases Oxidation [18]
Flavin-containing monooxygenase 2 (FMO2) OTUJUL9S FMO2_HUMAN Decreases Oxidation [19]
------------------------------------------------------------------------------------
⏷ Show the Full List of 43 DOT(s)
Indication(s) of Propranolol
Disease Entry ICD 11 Status REF
Angina pectoris BA40 Approved [3]
Atrial fibrillation BC81.3 Approved [3]
Cocaine addiction 6C45.2 Approved [3]
Hemangioma 2E81-2F2Y Approved [3]
Migraine 8A80 Approved [4]
Respiratory papillomatosis 2F00.1 Investigative [3]
Propranolol Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Adrenergic receptor beta-1 (ADRB1) TTR6W5O ADRB1_HUMAN Antagonist [21]
------------------------------------------------------------------------------------
Propranolol Interacts with 4 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
P-glycoprotein 1 (ABCB1) DTUGYRD MDR1_HUMAN Substrate [22]
Organic cation transporter 2 (SLC22A2) DT9IDPW S22A2_HUMAN Substrate [23]
Organic cation transporter 3 (SLC22A3) DT6201N S22A3_HUMAN Substrate [23]
Organic cation transporter 1 (SLC22A1) DTT79CX S22A1_HUMAN Substrate [23]
------------------------------------------------------------------------------------
Propranolol Interacts with 8 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [24]
Cytochrome P450 1A2 (CYP1A2) DEJGDUW CP1A2_HUMAN Metabolism [25]
Cytochrome P450 2D6 (CYP2D6) DECB0K3 CP2D6_HUMAN Metabolism [26]
Cytochrome P450 3A5 (CYP3A5) DEIBDNY CP3A5_HUMAN Metabolism [27]
Cytochrome P450 3A7 (CYP3A7) DERD86B CP3A7_HUMAN Metabolism [27]
Mephenytoin 4-hydroxylase (CYP2C19) DEGTFWK CP2CJ_HUMAN Metabolism [28]
Dimethylaniline oxidase 2 (FMO2) DEIASEZ FMO2_HUMAN Metabolism [29]
Cytochrome P450 102A1 (cyp102) DE4OGUF CPXB_BACMB Metabolism [30]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 DME(s)
Propranolol Interacts with 34 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) OTQGYY83 CP3A4_HUMAN Increases Oxidation [31]
Cytochrome P450 2C19 (CYP2C19) OTFMJYYE CP2CJ_HUMAN Increases Oxidation [31]
Flavin-containing monooxygenase 2 (FMO2) OTUJUL9S FMO2_HUMAN Increases Oxidation [29]
ATP-dependent translocase ABCB1 (ABCB1) OTEJROBO MDR1_HUMAN Increases Expression [32]
Potassium voltage-gated channel subfamily H member 2 (KCNH2) OTZX881H KCNH2_HUMAN Decreases Activity [33]
Potassium voltage-gated channel subfamily KQT member 1 (KCNQ1) OT8SPJNX KCNQ1_HUMAN Affects Response To Substance [34]
72 kDa type IV collagenase (MMP2) OT5NIWA2 MMP2_HUMAN Decreases Expression [20]
Matrix metalloproteinase-9 (MMP9) OTB2QDAV MMP9_HUMAN Decreases Expression [20]
Prostaglandin G/H synthase 2 (PTGS2) OT75U9M4 PGH2_HUMAN Decreases Expression [20]
Angiopoietin-2 (ANGPT2) OTEQK65P ANGP2_HUMAN Decreases Expression [35]
Nuclear receptor subfamily 1 group I member 2 (NR1I2) OTC5U0N5 NR1I2_HUMAN Increases Activity [36]
Renin (REN) OT52GZR2 RENI_HUMAN Decreases Activity [37]
Angiotensinogen (AGT) OTBZLYR3 ANGT_HUMAN Decreases Expression [38]
Insulin (INS) OTZ85PDU INS_HUMAN Decreases Expression [39]
Beta-2 adrenergic receptor (ADRB2) OTSDOX4Q ADRB2_HUMAN Decreases Expression [40]
Apoptosis regulator Bcl-2 (BCL2) OT9DVHC0 BCL2_HUMAN Decreases Expression [35]
Ornithine decarboxylase (ODC1) OTNDAGRR DCOR_HUMAN Increases Activity [41]
Beta-adrenergic receptor kinase 1 (GRK2) OT34KKWK ARBK1_HUMAN Decreases Expression [42]
RAC-alpha serine/threonine-protein kinase (AKT1) OT8H2YY7 AKT1_HUMAN Decreases Phosphorylation [43]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Increases Activity [44]
Proliferation marker protein Ki-67 (MKI67) OTA8N1QI KI67_HUMAN Decreases Expression [35]
Neurogenic locus notch homolog protein 1 (NOTCH1) OTI1WADQ NOTC1_HUMAN Decreases Expression [43]
G protein-activated inward rectifier potassium channel 1 (KCNJ3) OTHQG16J KCNJ3_HUMAN Increases Expression [40]
Caspase-7 (CASP7) OTAPJ040 CASP7_HUMAN Increases Activity [44]
Caspase-9 (CASP9) OTD4RFFG CASP9_HUMAN Increases Cleavage [45]
ADP-ribosylation factor 6 (ARF6) OTVV7KJO ARF6_HUMAN Affects Localization [46]
Angiopoietin-1 receptor (TEK) OT78YN57 TIE2_HUMAN Decreases Expression [35]
Apoptosis regulator BAX (BAX) OTAW0V4V BAX_HUMAN Increases Expression [35]
Delta-like protein 4 (DLL4) OTRA4K2V DLL4_HUMAN Decreases Expression [43]
Inward rectifier potassium channel 2 (KCNJ2) OT2OQEZS KCNJ2_HUMAN Affects Response To Substance [34]
Cytochrome P450 1A1 (CYP1A1) OTE4EFH8 CP1A1_HUMAN Increases ADR [47]
Cytochrome P450 2C9 (CYP2C9) OTGLBN29 CP2C9_HUMAN Increases Oxidation [31]
Sodium channel protein type 5 subunit alpha (SCN5A) OTGYZWR6 SCN5A_HUMAN Increases ADR [47]
Potassium voltage-gated channel subfamily E member 1 (KCNE1) OTZNQUW9 KCNE1_HUMAN Increases ADR [47]
------------------------------------------------------------------------------------
⏷ Show the Full List of 34 DOT(s)

References

1 ClinicalTrials.gov (NCT01458600) Adjuvant Treatment of Graves Ophthalmopathy With NSAID (aGO Study)
2 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 6649).
3 Propranolol FDA Label
4 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 7596).
5 Monitoring of deiodinase deficiency based on transcriptomic responses in SH-SY5Y cells. Arch Toxicol. 2013 Jun;87(6):1103-13. doi: 10.1007/s00204-013-1018-4. Epub 2013 Feb 10.
6 Diagnosis and treatment of thyrotoxicosis in childhood. A European questionnaire study. Eur J Endocrinol. 1994 Nov;131(5):467-73.
7 Drug metabolism by flavin-containing monooxygenases of human and mouse. Expert Opin Drug Metab Toxicol. 2017 Feb;13(2):167-181.
8 Hepatocellular peroxisomes in human alcoholic and drug-induced hepatitis: a quantitative study. Hepatology. 1991 Nov;14(5):811-7.
9 Serum paraoxonase activity before and after treatment of thyrotoxicosis. Clin Endocrinol (Oxf). 2004 Jan;60(1):75-80.
10 Blood cell oxidative stress precedes hemolysis in whole blood-liver slice co-cultures of rat, dog, and human tissues. Toxicol Appl Pharmacol. 2010 May 1;244(3):354-65. doi: 10.1016/j.taap.2010.01.017. Epub 2010 Feb 6.
11 Effect of 1 alpha-hydroxyvitamin D3 on serum levels of thyroid hormones in hyperthyroid patients with untreated Graves' disease. Metabolism. 1997 Oct;46(10):1184-8. doi: 10.1016/s0026-0495(97)90214-6.
12 Low-expressional IGF1 mediated methimazole-induced liver developmental toxicity in fetal mice. Toxicology. 2018 Sep 1;408:70-79. doi: 10.1016/j.tox.2018.07.004. Epub 2018 Jul 7.
13 Identification of classifiers for increase or decrease of thyroid peroxidase activity in the FTC-238/hTPO recombinant cell line. Environ Sci Technol. 2011 Sep 15;45(18):7906-14. doi: 10.1021/es200475k. Epub 2011 Aug 24.
14 Thyroid organotypic rat and human cultures used to investigate drug effects on thyroid function, hormone synthesis and release pathways. Toxicol Appl Pharmacol. 2012 Apr 1;260(1):81-8. doi: 10.1016/j.taap.2012.01.029. Epub 2012 Feb 8.
15 Effect of common medications on the expression of SARS-CoV-2 entry receptors in liver tissue. Arch Toxicol. 2020 Dec;94(12):4037-4041. doi: 10.1007/s00204-020-02869-1. Epub 2020 Aug 17.
16 Identification and functional analysis of common human flavin-containing monooxygenase 3 genetic variants. J Pharmacol Exp Ther. 2007 Jan;320(1):266-73. doi: 10.1124/jpet.106.112268. Epub 2006 Oct 18.
17 Role of CYP2A6 in Methimazole Bioactivation and Hepatotoxicity. Chem Res Toxicol. 2021 Dec 20;34(12):2534-2539. doi: 10.1021/acs.chemrestox.1c00300. Epub 2021 Nov 17.
18 Evaluation of xenobiotic N- and S-oxidation by variant flavin-containing monooxygenase 1 (FMO1) enzymes. Toxicol Sci. 2004 Apr;78(2):196-203.
19 Haplotype and functional analysis of four flavin-containing monooxygenase isoform 2 (FMO2) polymorphisms in Hispanics. Pharmacogenet Genomics. 2005 Apr;15(4):245-56. doi: 10.1097/01213011-200504000-00008.
20 beta2-adrenergic antagonists suppress pancreatic cancer cell invasion by inhibiting CREB, NFB and AP-1. Cancer Biol Ther. 2010 Jul 1;10(1):19-29.
21 Beta-blockers in the treatment of hypertension: are there clinically relevant differences Postgrad Med. 2009 May;121(3):90-8.
22 Tarascon Pocket Pharmacopoeia 2018 Classic Shirt-Pocket Edition.
23 Influx Transport of Cationic Drug at the Blood-Retinal Barrier: Impact on the Retinal Delivery of Neuroprotectants. Biol Pharm Bull. 2017;40(8):1139-1145.
24 Cytochrome P450 isozymes involved in propranolol metabolism in human liver microsomes. The role of CYP2D6 as ring-hydroxylase and CYP1A2 as N-desisopropylase. Drug Metab Dispos. 1994 Nov-Dec;22(6):909-15.
25 Synthetic and natural compounds that interact with human cytochrome P450 1A2 and implications in drug development. Curr Med Chem. 2009;16(31):4066-218.
26 Structure-activity relationship for human cytochrome P450 substrates and inhibitors. Drug Metab Rev. 2002 Feb-May;34(1-2):69-82.
27 The influence of diltiazem versus cimetidine on propranolol metabolism. J Clin Pharmacol. 1992 Dec;32(12):1099-104.
28 Clinical relevance of genetic polymorphisms in the human CYP2C subfamily. Br J Clin Pharmacol. 2001 Oct;52(4):349-55.
29 Human FMO2-based microbial whole-cell catalysts for drug metabolite synthesis. Microb Cell Fact. 2015 Jun 12;14:82.
30 acillus megaterium SF185 spores exert protective effects against oxidative stress in vivo and in vitro. Sci Rep. 2019 Aug 19;9(1):12082.
31 Comparative study of the oxidation of propranolol enantiomers in hepatic and small intestinal microsomes from cynomolgus and marmoset monkeys. Chem Biol Interact. 2010 Jan 5;183(1):67-78. doi: 10.1016/j.cbi.2009.10.007.
32 Rapid induction of P-glycoprotein expression by high permeability compounds in colonic cells in vitro: a possible source of transporter mediated drug interactions?. Biochem Pharmacol. 2004 Aug 15;68(4):783-90. doi: 10.1016/j.bcp.2004.05.006.
33 Comparison of HERG channel blocking effects of various beta-blockers-- implication for clinical strategy. Br J Pharmacol. 2006 Mar;147(6):642-52. doi: 10.1038/sj.bjp.0706508.
34 Additional gene variants reduce effectiveness of beta-blockers in the LQT1 form of long QT syndrome. J Cardiovasc Electrophysiol. 2004 Feb;15(2):190-9. doi: 10.1046/j.1540-8167.2004.03212.x.
35 Propranolol inhibits proliferation and induces apoptosis of hemangioma-derived endothelial cells via Akt pathway by down-regulating Ang-2 expression. Chem Biol Interact. 2020 Jan 25;316:108925. doi: 10.1016/j.cbi.2019.108925. Epub 2019 Dec 12.
36 Development of a common carp (Cyprinus carpio) pregnane X receptor (cPXR) transactivation reporter assay and its activation by azole fungicides and pharmaceutical chemicals. Toxicol In Vitro. 2017 Jun;41:114-122. doi: 10.1016/j.tiv.2017.02.023. Epub 2017 Mar 1.
37 Intrapatient comparison of treatment with chlorthalidone, spironolactone and propranolol in normoreninemic essential hypertension. Am J Cardiol. 1975 Oct 31;36(5):716-21. doi: 10.1016/0002-9149(75)90174-5.
38 Labetalol (AH5158), a competitive alpha- and beta-receptor blocking drug, in the management of hypertension. Aust N Z J Med. 1976 Aug;6(3 Suppl):83-8. doi: 10.1111/j.1445-5994.1976.tb03341.x.
39 Beta-adrenergic contribution to glucagon-induced glucose production and insulin secretion in uremia. Am J Physiol. 1986 Sep;251(3 Pt 1):E322-7. doi: 10.1152/ajpendo.1986.251.3.E322.
40 Expression of inwardly rectifying potassium channels (GIRKs) and beta-adrenergic regulation of breast cancer cell lines. BMC Cancer. 2004 Dec 16;4:93. doi: 10.1186/1471-2407-4-93.
41 Adrenergic modulation of cardiac development in the rat: effects of prenatal exposure to propranolol via continuous maternal infusion. J Dev Physiol. 1990 May;13(5):243-9.
42 Reciprocal in vivo regulation of myocardial G protein-coupled receptor kinase expression by beta-adrenergic receptor stimulation and blockade. Circulation. 1998 Oct 27;98(17):1783-9. doi: 10.1161/01.cir.98.17.1783.
43 Propranolol inhibits proliferation and invasion of hemangioma-derived endothelial cells by suppressing the DLL4/Notch1/Akt pathway. Chem Biol Interact. 2018 Oct 1;294:28-33. doi: 10.1016/j.cbi.2018.08.018. Epub 2018 Aug 18.
44 Palmitate increases the susceptibility of cells to drug-induced toxicity: an in vitro method to identify drugs with potential contraindications in patients with metabolic disease. Toxicol Sci. 2012 Oct;129(2):346-62. doi: 10.1093/toxsci/kfs208. Epub 2012 Jun 14.
45 Inhibition of pancreatic cancer cell proliferation by propranolol occurs through apoptosis induction: the study of beta-adrenoceptor antagonist's anticancer effect in pancreatic cancer cell. Pancreas. 2009 Jan;38(1):94-100. doi: 10.1097/MPA.0b013e318184f50c.
46 An effector domain mutant of Arf6 implicates phospholipase D in endosomal membrane recycling. Mol Biol Cell. 2006 Jan;17(1):327-35. doi: 10.1091/mbc.e05-06-0523. Epub 2005 Nov 9.
47 ADReCS-Target: target profiles for aiding drug safety research and application. Nucleic Acids Res. 2018 Jan 4;46(D1):D911-D917. doi: 10.1093/nar/gkx899.