General Information of Drug Combination (ID: DCR3HJU)

Drug Combination Name
Olmesartan medoxomil Chloroquine
Indication
Disease Entry Status REF
Chronic myelogenous leukemia Investigative [1]
Component Drugs Olmesartan medoxomil   DMWBHRY Chloroquine   DMSI5CB
Small molecular drug Small molecular drug
2D MOL 2D MOL
3D MOL 3D MOL
High-throughput Screening Result Testing Cell Line: KBM-7
Zero Interaction Potency (ZIP) Score: 3.88
Bliss Independence Score: 3.88
Loewe Additivity Score: 16.72
LHighest Single Agent (HSA) Score: 16.72

Molecular Interaction Atlas of This Drug Combination

Molecular Interaction Atlas (MIA)
Indication(s) of Olmesartan medoxomil
Disease Entry ICD 11 Status REF
High blood pressure BA00 Approved [2]
Olmesartan medoxomil Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Angiotensin II receptor type-1 (AGTR1) TT8DBY3 AGTR1_HUMAN Antagonist [8]
------------------------------------------------------------------------------------
Olmesartan medoxomil Interacts with 8 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
Multidrug resistance-associated protein 2 (ABCC2) DTFI42L MRP2_HUMAN Substrate [9]
P-glycoprotein 1 (ABCB1) DTUGYRD MDR1_HUMAN Substrate [10]
Breast cancer resistance protein (ABCG2) DTI7UX6 ABCG2_HUMAN Substrate [11]
Organic anion transporting polypeptide 1B1 (SLCO1B1) DT3D8F0 SO1B1_HUMAN Substrate [12]
Multidrug resistance-associated protein 4 (ABCC4) DTCSGPB MRP4_HUMAN Substrate [9]
Organic anion transporter 1 (SLC22A6) DTQ23VB S22A6_HUMAN Substrate [9]
Organic anion transporter 3 (SLC22A8) DTVP67E S22A8_HUMAN Substrate [9]
Organic anion transporting polypeptide 1B3 (SLCO1B3) DT9C1TS SO1B3_HUMAN Substrate [9]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 DTP(s)
Olmesartan medoxomil Interacts with 2 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Bile salt export pump (ABCB11) OTRU7THO ABCBB_HUMAN Decreases Activity [13]
Tight junction protein ZO-1 (TJP1) OTBDCUPK ZO1_HUMAN Affects Localization [14]
------------------------------------------------------------------------------------
Indication(s) of Chloroquine
Disease Entry ICD 11 Status REF
Malaria 1F40-1F45 Approved [3]
Plasmodium falciparum malaria 1F40 Approved [4]
Plasmodium malariae malaria N.A. Approved [4]
Plasmodium ovale malaria N.A. Approved [4]
Systemic lupus erythematosus 4A40.0 Approved [4]
Coronavirus Disease 2019 (COVID-19) 1D6Y Phase 3 [5]
Middle East Respiratory Syndrome (MERS) 1D64 Investigative [6]
Severe acute respiratory syndrome (SARS) 1D65 Investigative [7]
Chloroquine Interacts with 3 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
HUMAN pH-dependent viral fusion/replication (pH-DVF/R) TTD16BI N.A. Inhibitor [15]
HUMAN glycosylation of host receptor (GHR) TTZGK1R N.A. Inhibitor [15]
Duffy antigen chemokine receptor (ACKR1) TTKY2NS ACKR1_HUMAN Modulator [16]
------------------------------------------------------------------------------------
Chloroquine Interacts with 2 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
P-glycoprotein 1 (ABCB1) DTUGYRD MDR1_HUMAN Substrate [17]
Multidrug and toxin extrusion protein 1 (SLC47A1) DTZGT0P S47A1_HUMAN Substrate [18]
------------------------------------------------------------------------------------
Chloroquine Interacts with 5 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [19]
Cytochrome P450 1A1 (CYP1A1) DE6OQ3W CP1A1_HUMAN Metabolism [20]
Cytochrome P450 2D6 (CYP2D6) DECB0K3 CP2D6_HUMAN Metabolism [21]
Cytochrome P450 3A5 (CYP3A5) DEIBDNY CP3A5_HUMAN Metabolism [19]
Cytochrome P450 2C8 (CYP2C8) DES5XRU CP2C8_HUMAN Metabolism [22]
------------------------------------------------------------------------------------
Chloroquine Interacts with 77 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) OTQGYY83 CP3A4_HUMAN Decreases Activity [23]
Cytochrome P450 2D6 (CYP2D6) OTZJC802 CP2D6_HUMAN Decreases Activity [20]
Tumor necrosis factor receptor superfamily member 10A (TNFRSF10A) OTBPCU2O TR10A_HUMAN Increases Expression [24]
Inhibitor of nuclear factor kappa-B kinase subunit beta (IKBKB) OT9RDS3H IKKB_HUMAN Decreases Expression [25]
Inhibitor of nuclear factor kappa-B kinase subunit alpha (CHUK) OTLF4ZB1 IKKA_HUMAN Decreases Expression [25]
Trans-Golgi network integral membrane protein 2 (TGOLN2) OTM647IV TGON2_HUMAN Affects Localization [26]
Claudin-1 (CLDN1) OT27KV99 CLD1_HUMAN Increases Expression [27]
Epidermal growth factor receptor (EGFR) OTAPLO1S EGFR_HUMAN Decreases Expression [28]
Metalloproteinase inhibitor 1 (TIMP1) OTOXC51H TIMP1_HUMAN Decreases Expression [29]
Tumor necrosis factor (TNF) OT4IE164 TNFA_HUMAN Decreases Expression [30]
Interleukin-1 alpha (IL1A) OTPSGILV IL1A_HUMAN Increases Expression [31]
Interleukin-1 beta (IL1B) OT0DWXXB IL1B_HUMAN Decreases Expression [32]
Ferritin heavy chain (FTH1) OT6IFS0O FRIH_HUMAN Increases Expression [29]
Receptor tyrosine-protein kinase erbB-2 (ERBB2) OTOAUNCK ERBB2_HUMAN Decreases Expression [28]
Cellular tumor antigen p53 (TP53) OTIE1VH3 P53_HUMAN Increases Activity [33]
Sodium/potassium-transporting ATPase subunit alpha-1 (ATP1A1) OTCJ458Q AT1A1_HUMAN Increases Expression [34]
Apolipoprotein D (APOD) OTT77XW8 APOD_HUMAN Affects Localization [35]
Interleukin-6 (IL6) OTUOSCCU IL6_HUMAN Decreases Expression [30]
Cathepsin B (CTSB) OTP9G5QB CATB_HUMAN Decreases Activity [36]
ATP-dependent translocase ABCB1 (ABCB1) OTEJROBO MDR1_HUMAN Decreases Expression [24]
72 kDa type IV collagenase (MMP2) OT5NIWA2 MMP2_HUMAN Decreases Expression [37]
Poly polymerase 1 (PARP1) OT310QSG PARP1_HUMAN Increases Cleavage [38]
Interleukin-8 (CXCL8) OTS7T5VH IL8_HUMAN Increases Expression [31]
C-C motif chemokine 2 (CCL2) OTAD2HEL CCL2_HUMAN Increases Expression [31]
Matrix metalloproteinase-9 (MMP9) OTB2QDAV MMP9_HUMAN Decreases Expression [37]
Glutamine synthetase (GLUL) OTYGTCGF GLNA_HUMAN Decreases Expression [39]
CCAAT/enhancer-binding protein beta (CEBPB) OTM9MQIA CEBPB_HUMAN Increases Expression [40]
Nuclear factor NF-kappa-B p105 subunit (NFKB1) OTNRRD8I NFKB1_HUMAN Decreases Expression [25]
Cation-dependent mannose-6-phosphate receptor (M6PR) OTFEWOSB MPRD_HUMAN Affects Localization [26]
Receptor tyrosine-protein kinase erbB-3 (ERBB3) OTRSST0A ERBB3_HUMAN Decreases Expression [28]
Mitogen-activated protein kinase 3 (MAPK3) OTCYKGKO MK03_HUMAN Decreases Phosphorylation [41]
Calreticulin (CALR) OTYD2TR1 CALR_HUMAN Increases Expression [40]
Mitogen-activated protein kinase 1 (MAPK1) OTH85PI5 MK01_HUMAN Decreases Phosphorylation [41]
RAC-alpha serine/threonine-protein kinase (AKT1) OT8H2YY7 AKT1_HUMAN Decreases Phosphorylation [42]
Multidrug resistance-associated protein 1 (ABCC1) OTGUN89S MRP1_HUMAN Decreases Expression [24]
DNA damage-inducible transcript 3 protein (DDIT3) OTI8YKKE DDIT3_HUMAN Increases Expression [40]
Cyclin-dependent kinase inhibitor 1 (CDKN1A) OTQWHCZE CDN1A_HUMAN Increases Expression [43]
Aquaporin-2 (AQP2) OTQLBKK6 AQP2_HUMAN Decreases Expression [44]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Increases Cleavage [45]
Collagenase 3 (MMP13) OTY8BZIE MMP13_HUMAN Increases Expression [37]
Coatomer subunit delta (ARCN1) OTJ96STE COPD_HUMAN Affects Localization [26]
Eotaxin (CCL11) OT3BIFPK CCL11_HUMAN Decreases Secretion [46]
Microsomal triglyceride transfer protein large subunit (MTTP) OTNUVSDT MTP_HUMAN Increases Expression [47]
Caspase-9 (CASP9) OTD4RFFG CASP9_HUMAN Increases Cleavage [45]
Gamma-aminobutyric acid receptor-associated protein-like 2 (GABARAPL2) OTS7YVHF GBRL2_HUMAN Increases Expression [39]
Interleukin-2 (IL2) OTGI4NSA IL2_HUMAN Decreases Expression [48]
Rho-related GTP-binding protein RhoB (RHOB) OTHQFQF7 RHOB_HUMAN Increases Expression [39]
Transcription factor p65 (RELA) OTUJP9CN TF65_HUMAN Decreases Expression [25]
Recombining binding protein suppressor of hairless (RBPJ) OTD7CUG0 SUH_HUMAN Increases Expression [49]
Lymphotoxin-beta (LTB) OTUFS8CF TNFC_HUMAN Increases Expression [31]
Golgin subfamily A member 2 (GOLGA2) OT5S9KYM GOGA2_HUMAN Affects Localization [26]
BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) OT4SO7J4 BNIP3_HUMAN Increases Expression [50]
Serine-protein kinase ATM (ATM) OTQVOHLT ATM_HUMAN Increases Phosphorylation [51]
Sequestosome-1 (SQSTM1) OTGY5D5J SQSTM_HUMAN Increases Expression [52]
Solute carrier family 12 member 1 (SLC12A1) OT6YSX0G S12A1_HUMAN Decreases Expression [44]
Nuclear receptor coactivator 4 (NCOA4) OTRVU0UA NCOA4_HUMAN Increases Expression [29]
Beclin-1 (BECN1) OT4X293M BECN1_HUMAN Decreases Expression [53]
Caspase-8 (CASP8) OTA8TVI8 CASP8_HUMAN Increases Cleavage [24]
Early endosome antigen 1 (EEA1) OTIBXC1B EEA1_HUMAN Affects Localization [26]
Occludin (OCLN) OTSUTVWL OCLN_HUMAN Increases Expression [27]
Hypoxia-inducible factor 1-alpha (HIF1A) OTADSC03 HIF1A_HUMAN Decreases Expression [41]
ATP-binding cassette sub-family C member 2 (ABCC2) OTJSIGV5 MRP2_HUMAN Decreases Expression [24]
Tribbles homolog 3 (TRIB3) OTG5OS7X TRIB3_HUMAN Increases Expression [40]
Microtubule-associated proteins 1A/1B light chain 3B (MAP1LC3B) OTUYHB84 MLP3B_HUMAN Increases Expression [54]
Autophagy protein 5 (ATG5) OT4T5SMS ATG5_HUMAN Increases Expression [36]
Microtubule-associated proteins 1A/1B light chain 3A (MAP1LC3A) OTPMGIU4 MLP3A_HUMAN Increases Expression [55]
Toll-like receptor 9 (TLR9) OTFZ45HX TLR9_HUMAN Increases Expression [37]
Toll-like receptor 8 (TLR8) OTEJRL9C TLR8_HUMAN Decreases Activity [56]
NAD-dependent protein deacetylase sirtuin-3, mitochondrial (SIRT3) OTMEF544 SIR3_HUMAN Increases Stability [57]
Toll-like receptor 7 (TLR7) OT3HZV7Z TLR7_HUMAN Decreases Activity [56]
Programmed cell death 1 ligand 1 (CD274) OTJ0VFDL PD1L1_HUMAN Decreases Expression [24]
Broad substrate specificity ATP-binding cassette transporter ABCG2 (ABCG2) OTW8V2V1 ABCG2_HUMAN Decreases Expression [24]
NF-kappa-B essential modulator (IKBKG) OTNWJWSD NEMO_HUMAN Decreases Expression [25]
Solute carrier organic anion transporter family member 1B1 (SLCO1B1) OTNEN8QK SO1B1_HUMAN Affects Localization [34]
Porphobilinogen deaminase (HMBS) OT3P47DC HEM3_HUMAN Increases Response To Substance [58]
Cytochrome P450 2C8 (CYP2C8) OTHCWT42 CP2C8_HUMAN Increases Metabolism [59]
Linker for activation of T-cells family member 2 (LAT2) OTWJDKIH NTAL_HUMAN Increases Response To Substance [60]
------------------------------------------------------------------------------------
⏷ Show the Full List of 77 DOT(s)

References

1 Recurrent recessive mutation in deoxyguanosine kinase causes idiopathic noncirrhotic portal hypertension.Hepatology. 2016 Jun;63(6):1977-86. doi: 10.1002/hep.28499. Epub 2016 Mar 31.
2 Effect of angiotensin receptor blockade on endothelial function: focus on olmesartan medoxomil. Vasc Health Risk Manag. 2009;5(1):301-14.
3 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 5535).
4 Chloroquine FDA Label
5 ClinicalTrials.gov (NCT04360759) Chloroquine Outpatient Treatment Evaluation for HIV-Covid-19. U.S. National Institutes of Health.
6 Coronaviruses - drug discovery and therapeutic options. Nat Rev Drug Discov. 2016 May;15(5):327-47.
7 Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat Rev Drug Discov. 2020 Mar;19(3):149-150.
8 Mechanism of diastolic stiffening of the failing myocardium and its prevention by angiotensin receptor and calcium channel blockers. J Cardiovasc Pharmacol. 2009 Jul;54(1):47-56.
9 Multiple human isoforms of drug transporters contribute to the hepatic and renal transport of olmesartan, a selective antagonist of the angiotensin II AT1-receptor. Drug Metab Dispos. 2007 Dec;35(12):2166-76.
10 KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017 Jan 4;45(D1):D353-D361. (dg:DG01665)
11 KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017 Jan 4;45(D1):D353-D361. (dg:DG01913)
12 OATP1B1, OATP1B3, and mrp2 are involved in hepatobiliary transport of olmesartan, a novel angiotensin II blocker. Drug Metab Dispos. 2006 May;34(5):862-9.
13 A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development. Toxicol Sci. 2013 Nov;136(1):216-41.
14 Immunopathogenesis of olmesartan-associated enteropathy. Aliment Pharmacol Ther. 2015 Dec;42(11-12):1303-14. doi: 10.1111/apt.13413. Epub 2015 Oct 1.
15 Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020 Mar;30(3):269-271.
16 Drugs@FDA. U.S. Food and Drug Administration. U.S. Department of Health & Human Services.
17 Improving the prediction of the brain disposition for orally administered drugs using BDDCS. Adv Drug Deliv Rev. 2012 Jan;64(1):95-109.
18 Molecular mechanism of renal tubular secretion of the antimalarial drug chloroquine. Antimicrob Agents Chemother. 2011 Jul;55(7):3091-8.
19 Cytochrome P450 2C8 and CYP3A4/5 are involved in chloroquine metabolism in human liver microsomes. Arch Pharm Res. 2003 Aug;26(8):631-7.
20 In vitro metabolism of chloroquine: identification of CYP2C8, CYP3A4, and CYP2D6 as the main isoforms catalyzing N-desethylchloroquine formation. Drug Metab Dispos. 2003 Jun;31(6):748-54.
21 Halofantrine and chloroquine inhibit CYP2D6 activity in healthy Zambians. Br J Clin Pharmacol. 1998 Mar;45(3):315-7.
22 Short communication: high prevalence of the cytochrome P450 2C8*2 mutation in Northern Ghana. Trop Med Int Health. 2005 Dec;10(12):1271-3.
23 Application of higher throughput screening (HTS) inhibition assays to evaluate the interaction of antiparasitic drugs with cytochrome P450s. Drug Metab Dispos. 2001 Jan;29(1):30-5.
24 Autophagy inhibition upregulates CD4(+) tumor infiltrating lymphocyte expression via miR-155 regulation and TRAIL activation. Mol Oncol. 2016 Dec;10(10):1516-1531. doi: 10.1016/j.molonc.2016.08.005. Epub 2016 Sep 16.
25 Niclosamide, an anti-helminthic molecule, downregulates the retroviral oncoprotein Tax and pro-survival Bcl-2 proteins in HTLV-1-transformed T lymphocytes. Biochem Biophys Res Commun. 2015 Aug 14;464(1):221-228. doi: 10.1016/j.bbrc.2015.06.120. Epub 2015 Jun 23.
26 Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy. 2018;14(8):1435-1455. doi: 10.1080/15548627.2018.1474314. Epub 2018 Jul 20.
27 Chloroquine and Hydroxychloroquine Increase Retinal Pigment Epithelial Layer Permeability. J Biochem Mol Toxicol. 2015 Jul;29(7):299-304. doi: 10.1002/jbt.21696. Epub 2015 Mar 9.
28 Sulindac metabolites induce proteosomal and lysosomal degradation of the epidermal growth factor receptor. Cancer Prev Res (Phila). 2010 Apr;3(4):560-72. doi: 10.1158/1940-6207.CAPR-09-0159. Epub 2010 Mar 23.
29 Artesunate alleviates liver fibrosis by regulating ferroptosis signaling pathway. Biomed Pharmacother. 2019 Jan;109:2043-2053. doi: 10.1016/j.biopha.2018.11.030. Epub 2018 Nov 26.
30 Calcitriol-mediated hypercalcaemia and increased interleukins in a patient with sarcoid myopathy. Clin Rheumatol. 1999;18(6):488-91. doi: 10.1007/s100670050144.
31 Reactive oxygen species mediate chloroquine-induced expression of chemokines by human astroglial cells. Glia. 2004 Jul;47(1):9-20. doi: 10.1002/glia.20017.
32 Profiling the immunotoxicity of chemicals based on in vitro evaluation by a combination of the Multi-ImmunoTox assay and the IL-8 Luc assay. Arch Toxicol. 2018 Jun;92(6):2043-2054. doi: 10.1007/s00204-018-2199-7. Epub 2018 Mar 29.
33 High-throughput measurement of the Tp53 response to anticancer drugs and random compounds using a stably integrated Tp53-responsive luciferase reporter. Carcinogenesis. 2002 Jun;23(6):949-57. doi: 10.1093/carcin/23.6.949.
34 Downregulation of Organic Anion Transporting Polypeptide (OATP) 1B1 Transport Function by Lysosomotropic Drug Chloroquine: Implication in OATP-Mediated Drug-Drug Interactions. Mol Pharm. 2016 Mar 7;13(3):839-51. doi: 10.1021/acs.molpharmaceut.5b00763. Epub 2016 Feb 1.
35 Protecting cells by protecting their vulnerable lysosomes: Identification of a new mechanism for preserving lysosomal functional integrity upon oxidative stress. PLoS Genet. 2017 Feb 9;13(2):e1006603. doi: 10.1371/journal.pgen.1006603. eCollection 2017 Feb.
36 Chloroquine aggravates the arsenic trioxide (As2O3)-induced apoptosis of acute promyelocytic leukemia NB4 cells via inhibiting lysosomal degradation in vitro. Eur Rev Med Pharmacol Sci. 2018 Oct;22(19):6412-6421. doi: 10.26355/eurrev_201810_16054.
37 Chloroquine has tumor-inhibitory and tumor-promoting effects in triple-negative breast cancer. Oncol Lett. 2013 Dec;6(6):1665-1672. doi: 10.3892/ol.2013.1602. Epub 2013 Oct 4.
38 NDRG1 inhibition sensitizes osteosarcoma cells to combretastatin A-4 through targeting autophagy. Cell Death Dis. 2017 Sep 14;8(9):e3048. doi: 10.1038/cddis.2017.438.
39 Toxicoproteomics reveals an effect of clozapine on autophagy in human liver spheroids. Toxicol Mech Methods. 2023 Jun;33(5):401-410. doi: 10.1080/15376516.2022.2156005. Epub 2022 Dec 19.
40 Increasing intratumor C/EBP- LIP and nitric oxide levels overcome resistance to doxorubicin in triple negative breast cancer. J Exp Clin Cancer Res. 2018 Nov 27;37(1):286. doi: 10.1186/s13046-018-0967-0.
41 Inhibition of autophagic flux differently modulates cannabidiol-induced death in 2D and 3D glioblastoma cell cultures. Sci Rep. 2020 Feb 14;10(1):2687. doi: 10.1038/s41598-020-59468-4.
42 Effect of toll-like receptor 7 and 9 targeted therapy to prevent the development of hepatocellular carcinoma. Liver Int. 2015 Mar;35(3):1063-76. doi: 10.1111/liv.12626. Epub 2014 Jul 30.
43 Control of mammary tumor cell growth in vitro by novel cell differentiation and apoptosis agents. Breast Cancer Res Treat. 2002 Sep;75(2):107-17. doi: 10.1023/a:1019698807564.
44 Chronic use of chloroquine disrupts the urine concentration mechanism by lowering cAMP levels in the inner medulla. Am J Physiol Renal Physiol. 2012 Sep 15;303(6):F900-5. doi: 10.1152/ajprenal.00547.2011. Epub 2012 Jul 11.
45 The dual PI3K/mTOR inhibitor NVP-BEZ235 and chloroquine synergize to trigger apoptosis via mitochondrial-lysosomal cross-talk. Int J Cancer. 2013 Jun 1;132(11):2682-93. doi: 10.1002/ijc.27935. Epub 2012 Dec 4.
46 Paradoxical Effect of Chloroquine Treatment in Enhancing Chikungunya Virus Infection. Viruses. 2018 May 17;10(5):268. doi: 10.3390/v10050268.
47 Cadmium induces triglyceride levels via microsomal triglyceride transfer protein (MTTP) accumulation caused by lysosomal deacidification regulated by endoplasmic reticulum (ER) Ca(2+) homeostasis. Chem Biol Interact. 2021 Oct 1;348:109649. doi: 10.1016/j.cbi.2021.109649. Epub 2021 Sep 10.
48 Chloroquine inhibits T cell proliferation by interfering with IL-2 production and responsiveness. Clin Exp Immunol. 1995 Oct;102(1):144-51. doi: 10.1111/j.1365-2249.1995.tb06648.x.
49 Presenilin-2 regulates the degradation of RBP-Jk protein through p38 mitogen-activated protein kinase. J Cell Sci. 2012 Mar 1;125(Pt 5):1296-308. doi: 10.1242/jcs.095984. Epub 2012 Feb 2.
50 Inhibition of cholesterol metabolism underlies synergy between mTOR pathway inhibition and chloroquine in bladder cancer cells. Oncogene. 2016 Aug 25;35(34):4518-28. doi: 10.1038/onc.2015.511. Epub 2016 Feb 8.
51 Ataxia telangiectasia-mutated and p53 are potential mediators of chloroquine-induced resistance to mammary carcinogenesis. Cancer Res. 2007 Dec 15;67(24):12026-33. doi: 10.1158/0008-5472.CAN-07-3058.
52 Inhibition of autophagy potentiates the antitumor effect of the multikinase inhibitor sorafenib in hepatocellular carcinoma. Int J Cancer. 2012 Aug 1;131(3):548-57. doi: 10.1002/ijc.26374. Epub 2011 Sep 12.
53 Antitumor activity of chloroquine in combination with Cisplatin in human gastric cancer xenografts. Asian Pac J Cancer Prev. 2015;16(9):3907-12. doi: 10.7314/apjcp.2015.16.9.3907.
54 Critical role of FoxO3a in alcohol-induced autophagy and hepatotoxicity. Am J Pathol. 2013 Dec;183(6):1815-1825. doi: 10.1016/j.ajpath.2013.08.011. Epub 2013 Oct 1.
55 Riluzole induces AR degradation via endoplasmic reticulum stress pathway in androgen-dependent and castration-resistant prostate cancer cells. Prostate. 2019 Feb;79(2):140-150. doi: 10.1002/pros.23719. Epub 2018 Oct 2.
56 HCV RNA Activates APCs via TLR7/TLR8 While Virus Selectively Stimulates Macrophages Without Inducing Antiviral Responses. Sci Rep. 2016 Jul 7;6:29447. doi: 10.1038/srep29447.
57 Effects of SIDT2 on the miR-25/NOX4/HuR axis and SIRT3 mRNA stability lead to ROS-mediated TNF- expression in hydroquinone-treated leukemia cells. Cell Biol Toxicol. 2023 Oct;39(5):2207-2225. doi: 10.1007/s10565-022-09705-5. Epub 2022 Mar 18.
58 Precipitation of acute intermittent porphyria by chloroquin. Indian Pediatr. 1996 Mar;33(3):241-3.
59 CYP2C8 and antimalaria drug efficacy. Pharmacogenomics. 2007 Feb;8(2):187-98. doi: 10.2217/14622416.8.2.187.
60 NTAL is associated with treatment outcome, cell proliferation and differentiation in acute promyelocytic leukemia. Sci Rep. 2020 Jun 25;10(1):10315. doi: 10.1038/s41598-020-66223-2.