General Information of Drug Off-Target (DOT) (ID: OT0XMVWH)

DOT Name Mitochondrial brown fat uncoupling protein 1
Synonyms UCP 1; Solute carrier family 25 member 7; Thermogenin
Gene Name UCP1
UniProt ID
UCP1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
8G8W; 8HBV; 8HBW; 8J1N
Pfam ID
PF00153
Sequence
MGGLTASDVHPTLGVQLFSAGIAACLADVITFPLDTAKVRLQVQGECPTSSVIRYKGVLG
TITAVVKTEGRMKLYSGLPAGLQRQISSASLRIGLYDTVQEFLTAGKETAPSLGSKILAG
LTTGGVAVFIGQPTEVVKVRLQAQSHLHGIKPRYTGTYNAYRIIATTEGLTGLWKGTTPN
LMRSVIINCTELVTYDLMKEAFVKNNILADDVPCHLVSALIAGFCATAMSSPVDVVKTRF
INSPPGQYKSVPNCAMKVFTNEGPTAFFKGLVPSFLRLGSWNVIMFVCFEQLKRELSKSR
QTMDCAT
Function
Mitochondrial protein responsible for thermogenic respiration, a specialized capacity of brown adipose tissue and beige fat that participates in non-shivering adaptive thermogenesis to temperature and diet variations and more generally to the regulation of energy balance. Functions as a long-chain fatty acid/LCFA and proton symporter, simultaneously transporting one LCFA and one proton through the inner mitochondrial membrane. However, LCFAs remaining associated with the transporter via their hydrophobic tails, it results in an apparent transport of protons activated by LCFAs. Thereby, dissipates the mitochondrial proton gradient and converts the energy of substrate oxydation into heat instead of ATP. Regulates the production of reactive oxygen species/ROS by mitochondria.
Tissue Specificity Brown adipose tissue.
KEGG Pathway
PPAR sig.ling pathway (hsa03320 )
Apelin sig.ling pathway (hsa04371 )
Thermogenesis (hsa04714 )
Huntington disease (hsa05016 )
Reactome Pathway
The proton buffering model (R-HSA-167827 )
The fatty acid cycling model (R-HSA-167826 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
14 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Mitochondrial brown fat uncoupling protein 1. [1]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Mitochondrial brown fat uncoupling protein 1. [2]
Methotrexate DM2TEOL Approved Methotrexate increases the expression of Mitochondrial brown fat uncoupling protein 1. [3]
Dexamethasone DMMWZET Approved Dexamethasone increases the expression of Mitochondrial brown fat uncoupling protein 1. [4]
Cyclophosphamide DM4O2Z7 Approved Cyclophosphamide decreases the expression of Mitochondrial brown fat uncoupling protein 1. [2]
Zidovudine DM4KI7O Approved Zidovudine increases the expression of Mitochondrial brown fat uncoupling protein 1. [5]
Tofacitinib DMBS370 Approved Tofacitinib increases the expression of Mitochondrial brown fat uncoupling protein 1. [6]
Nevirapine DM6HX9B Approved Nevirapine increases the expression of Mitochondrial brown fat uncoupling protein 1. [7]
Abacavir DMMN36E Approved Abacavir increases the expression of Mitochondrial brown fat uncoupling protein 1. [5]
Stavudine DM6DEK9 Approved Stavudine increases the expression of Mitochondrial brown fat uncoupling protein 1. [7]
Jakafi DMNORK8 Phase 3 Jakafi increases the expression of Mitochondrial brown fat uncoupling protein 1. [6]
PF-02545920 DMJPE61 Phase 2 PF-02545920 increases the expression of Mitochondrial brown fat uncoupling protein 1. [8]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Mitochondrial brown fat uncoupling protein 1. [11]
3R14S-OCHRATOXIN A DM2KEW6 Investigative 3R14S-OCHRATOXIN A decreases the expression of Mitochondrial brown fat uncoupling protein 1. [2]
------------------------------------------------------------------------------------
⏷ Show the Full List of 14 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Mitochondrial brown fat uncoupling protein 1. [9]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Mitochondrial brown fat uncoupling protein 1. [10]
------------------------------------------------------------------------------------

References

1 Design principles of concentration-dependent transcriptome deviations in drug-exposed differentiating stem cells. Chem Res Toxicol. 2014 Mar 17;27(3):408-20.
2 Transcriptome-based functional classifiers for direct immunotoxicity. Arch Toxicol. 2014 Mar;88(3):673-89.
3 Global molecular effects of tocilizumab therapy in rheumatoid arthritis synovium. Arthritis Rheumatol. 2014 Jan;66(1):15-23.
4 Dexamethasone and the inflammatory response in explants of human omental adipose tissue. Mol Cell Endocrinol. 2010 Feb 5;315(1-2):292-8.
5 Mitochondrial proliferation, DNA depletion and adipocyte differentiation in subcutaneous adipose tissue of HIV-positive HAART recipients. Antivir Ther. 2003 Aug;8(4):323-31.
6 White-to-brown metabolic conversion of human adipocytes by JAK inhibition. Nat Cell Biol. 2015 Jan;17(1):57-67. doi: 10.1038/ncb3075. Epub 2014 Dec 8.
7 Reverse transcriptase inhibitors alter uncoupling protein-1 and mitochondrial biogenesis in brown adipocytes. Antivir Ther. 2005;10(4):515-26.
8 A novel thermoregulatory role for PDE10A in mouse and human adipocytes. EMBO Mol Med. 2016 Jul 1;8(7):796-812. doi: 10.15252/emmm.201506085. Print 2016 Jul.
9 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
10 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
11 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.