General Information of Drug Off-Target (DOT) (ID: OT5HSO2B)

DOT Name Methyltransferase-like 26 (METTL26)
Gene Name METTL26
UniProt ID
MTL26_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF06080
Sequence
MLVAAAAERNKDPILHVLRQYLDPAQRGVRVLEVASGSGQHAAHFARAFPLAEWQPSDVD
QRCLDSIAATTQAQGLTNVKAPLHLDVTWGWEHWGGILPQSLDLLLCINMAHVSPLRCTE
GLFRAAGHLLKPRALLITYGPYAINGKISPQSNVDFDLMLRCRNPEWGLRDTALLEDLGK
ASGLLLERMVDMPANNKCLIFRKN

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Methyltransferase-like 26 (METTL26). [1]
------------------------------------------------------------------------------------
8 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Methyltransferase-like 26 (METTL26). [2]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Methyltransferase-like 26 (METTL26). [3]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Methyltransferase-like 26 (METTL26). [4]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Methyltransferase-like 26 (METTL26). [5]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Methyltransferase-like 26 (METTL26). [6]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Methyltransferase-like 26 (METTL26). [7]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Methyltransferase-like 26 (METTL26). [8]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Methyltransferase-like 26 (METTL26). [9]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
3 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
4 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
5 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
6 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
7 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
8 Bromodomain-containing protein 4 (BRD4) regulates RNA polymerase II serine 2 phosphorylation in human CD4+ T cells. J Biol Chem. 2012 Dec 14;287(51):43137-55.
9 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.