General Information of Drug Off-Target (DOT) (ID: OT5ZC54L)

DOT Name Probable gluconokinase (IDNK)
Synonyms EC 2.7.1.12; Gluconate kinase
Gene Name IDNK
UniProt ID
GNTK_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
2.7.1.12
Pfam ID
PF01202
Sequence
MAAPGALLVMGVSGSGKSTVGALLASELGWKFYDADDYHPEENRRKMGKGIPLNDQDRIP
WLCNLHDILLRDVASGQRVVLACSALKKTYRDILTQGKDGVALKCEESGKEAKQAEMQLL
VVHLSGSFEVISGRLLKREGHFMPPELLQSQFETLEPPAAPENFIQISVDKNVSEIIATI
METLKMK
KEGG Pathway
Pentose phosphate pathway (hsa00030 )
Metabolic pathways (hsa01100 )
Carbon metabolism (hsa01200 )
BioCyc Pathway
MetaCyc:HS14230-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Probable gluconokinase (IDNK). [1]
------------------------------------------------------------------------------------
7 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Probable gluconokinase (IDNK). [2]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Probable gluconokinase (IDNK). [3]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Probable gluconokinase (IDNK). [4]
Belinostat DM6OC53 Phase 2 Belinostat decreases the expression of Probable gluconokinase (IDNK). [5]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Probable gluconokinase (IDNK). [6]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Probable gluconokinase (IDNK). [7]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Probable gluconokinase (IDNK). [8]
------------------------------------------------------------------------------------
⏷ Show the Full List of 7 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
4 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
5 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
6 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297. doi: 10.1016/j.fct.2020.111297. Epub 2020 Mar 28.
7 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
8 Characterization of the Molecular Alterations Induced by the Prolonged Exposure of Normal Colon Mucosa and Colon Cancer Cells to Low-Dose Bisphenol A. Int J Mol Sci. 2022 Oct 1;23(19):11620. doi: 10.3390/ijms231911620.