General Information of Drug Off-Target (DOT) (ID: OT6CJH67)

DOT Name Mitochondrial import inner membrane translocase subunit Tim10 B (TIMM10B)
Synonyms Fracture callus protein 1; FxC1; Mitochondrial import inner membrane translocase subunit Tim9 B; TIMM10B; Tim10b
Gene Name TIMM10B
UniProt ID
T10B_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
7CGP
Pfam ID
PF02953
Sequence
MERQQQQQQQLRNLRDFLLVYNRMTELCFQRCVPSLHHRALDAEEEACLHSCAGKLIHSN
HRLMAAYVQLMPALVQRRIADYEAASAVPGVAAEQPGVSPSGS
Function
Component of the TIM22 complex, a complex that mediates the import and insertion of multi-pass transmembrane proteins into the mitochondrial inner membrane. The TIM22 complex forms a twin-pore translocase that uses the membrane potential as the external driving force. In the TIM22 complex, it may act as a docking point for the soluble 70 kDa complex that guides the target proteins in transit through the aqueous mitochondrial intermembrane space.
Tissue Specificity Ubiquitous, with highest expression in heart, kidney, liver and skeletal muscle.
Reactome Pathway
Mitochondrial protein import (R-HSA-1268020 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Mitochondrial import inner membrane translocase subunit Tim10 B (TIMM10B). [1]
------------------------------------------------------------------------------------
10 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Mitochondrial import inner membrane translocase subunit Tim10 B (TIMM10B). [2]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Mitochondrial import inner membrane translocase subunit Tim10 B (TIMM10B). [3]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Mitochondrial import inner membrane translocase subunit Tim10 B (TIMM10B). [4]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Mitochondrial import inner membrane translocase subunit Tim10 B (TIMM10B). [5]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Mitochondrial import inner membrane translocase subunit Tim10 B (TIMM10B). [6]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Mitochondrial import inner membrane translocase subunit Tim10 B (TIMM10B). [7]
Genistein DM0JETC Phase 2/3 Genistein decreases the expression of Mitochondrial import inner membrane translocase subunit Tim10 B (TIMM10B). [8]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide decreases the expression of Mitochondrial import inner membrane translocase subunit Tim10 B (TIMM10B). [10]
Nickel chloride DMI12Y8 Investigative Nickel chloride decreases the expression of Mitochondrial import inner membrane translocase subunit Tim10 B (TIMM10B). [11]
Resorcinol DMM37C0 Investigative Resorcinol increases the expression of Mitochondrial import inner membrane translocase subunit Tim10 B (TIMM10B). [12]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 Drug(s)
1 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
DNCB DMDTVYC Phase 2 DNCB affects the binding of Mitochondrial import inner membrane translocase subunit Tim10 B (TIMM10B). [9]
------------------------------------------------------------------------------------

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Increased mitochondrial ROS formation by acetaminophen in human hepatic cells is associated with gene expression changes suggesting disruption of the mitochondrial electron transport chain. Toxicol Lett. 2015 Apr 16;234(2):139-50.
4 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
5 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
6 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
7 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
8 Quantitative proteomics and transcriptomics addressing the estrogen receptor subtype-mediated effects in T47D breast cancer cells exposed to the phytoestrogen genistein. Mol Cell Proteomics. 2011 Jan;10(1):M110.002170.
9 Proteomic analysis of the cellular response to a potent sensitiser unveils the dynamics of haptenation in living cells. Toxicology. 2020 Dec 1;445:152603. doi: 10.1016/j.tox.2020.152603. Epub 2020 Sep 28.
10 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
11 The contact allergen nickel triggers a unique inflammatory and proangiogenic gene expression pattern via activation of NF-kappaB and hypoxia-inducible factor-1alpha. J Immunol. 2007 Mar 1;178(5):3198-207.
12 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.