General Information of Drug Off-Target (DOT) (ID: OTB78IF4)

DOT Name Mitochondrial 2-oxodicarboxylate carrier (SLC25A21)
Synonyms ODC; Mitochondrial 2-oxoadipate carrier; Solute carrier family 25 member 21
Gene Name SLC25A21
Related Disease
Mitochondrial DNA depletion syndrome 18 ( )
UniProt ID
ODC_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00153
Sequence
MSAKPEVSLVREASRQIVAGGSAGLVEICLMHPLDVVKTRFQIQRCATDPNSYKSLVDSF
RMIFQMEGLFGFYKGILPPILAETPKRAVKFFTFEQYKKLLGYVSLSPALTFAIAGLGSG
LTEAIVVNPFEVVKVGLQANRNTFAEQPSTVGYARQIIKKEGWGLQGLNKGLTATLGRHG
VFNMVYFGFYYNVKNMIPVNKDPILEFWRKFGIGLLSGTIASVINIPFDVAKSRIQGPQP
VPGEIKYRTCFKTMATVYQEEGILALYKGLLPKIMRLGPGGAVMLLVYEYTYSWLQENW
Function
Transports dicarboxylates across the inner membranes of mitochondria by a counter-exchange mechanism. Can transport 2-oxoadipate (2-oxohexanedioate), 2-oxoglutarate, adipate (hexanedioate), glutarate, and to a lesser extent, pimelate (heptanedioate), 2-oxopimelate (2-oxoheptanedioate), 2-aminoadipate (2-aminohexanedioate), oxaloacetate, and citrate. Plays a central role in catabolism of lysine, hydroxylysine, and tryptophan, by transporting common metabolite intermediates (such as 2-oxoadipate) into the mitochondria, where it is converted into acetyl-CoA and can enter the citric acid (TCA) cycle (Probable).
Tissue Specificity Expressed in placenta, gall bladder and colon.
Reactome Pathway
Lysine catabolism (R-HSA-71064 )

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Mitochondrial DNA depletion syndrome 18 DISMJS4T Limited Autosomal recessive [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
12 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Mitochondrial 2-oxodicarboxylate carrier (SLC25A21). [2]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Mitochondrial 2-oxodicarboxylate carrier (SLC25A21). [3]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Mitochondrial 2-oxodicarboxylate carrier (SLC25A21). [4]
Irinotecan DMP6SC2 Approved Irinotecan decreases the expression of Mitochondrial 2-oxodicarboxylate carrier (SLC25A21). [5]
Zidovudine DM4KI7O Approved Zidovudine increases the expression of Mitochondrial 2-oxodicarboxylate carrier (SLC25A21). [6]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Mitochondrial 2-oxodicarboxylate carrier (SLC25A21). [7]
SNDX-275 DMH7W9X Phase 3 SNDX-275 decreases the expression of Mitochondrial 2-oxodicarboxylate carrier (SLC25A21). [8]
Belinostat DM6OC53 Phase 2 Belinostat decreases the expression of Mitochondrial 2-oxodicarboxylate carrier (SLC25A21). [8]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Mitochondrial 2-oxodicarboxylate carrier (SLC25A21). [9]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Mitochondrial 2-oxodicarboxylate carrier (SLC25A21). [10]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Mitochondrial 2-oxodicarboxylate carrier (SLC25A21). [11]
Acetaldehyde DMJFKG4 Investigative Acetaldehyde decreases the expression of Mitochondrial 2-oxodicarboxylate carrier (SLC25A21). [12]
------------------------------------------------------------------------------------
⏷ Show the Full List of 12 Drug(s)

References

1 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
2 Design principles of concentration-dependent transcriptome deviations in drug-exposed differentiating stem cells. Chem Res Toxicol. 2014 Mar 17;27(3):408-20.
3 17-Estradiol Activates HSF1 via MAPK Signaling in ER-Positive Breast Cancer Cells. Cancers (Basel). 2019 Oct 11;11(10):1533. doi: 10.3390/cancers11101533.
4 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
5 Clinical determinants of response to irinotecan-based therapy derived from cell line models. Clin Cancer Res. 2008 Oct 15;14(20):6647-55.
6 Differential gene expression in human hepatocyte cell lines exposed to the antiretroviral agent zidovudine. Arch Toxicol. 2014 Mar;88(3):609-23. doi: 10.1007/s00204-013-1169-3. Epub 2013 Nov 30.
7 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
8 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
9 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
10 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
11 Bisphenolic compounds alter gene expression in MCF-7 cells through interaction with estrogen receptor . Toxicol Appl Pharmacol. 2020 Jul 15;399:115030. doi: 10.1016/j.taap.2020.115030. Epub 2020 May 6.
12 Transcriptome profile analysis of saturated aliphatic aldehydes reveals carbon number-specific molecules involved in pulmonary toxicity. Chem Res Toxicol. 2014 Aug 18;27(8):1362-70.