General Information of Drug Off-Target (DOT) (ID: OTE0Q78Q)

DOT Name R3H domain-containing protein 4 (R3HDM4)
Gene Name R3HDM4
UniProt ID
R3HD4_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF01424 ; PF13902
Sequence
MVALENPECGPEAAEGTPGGRRLLPLPSCLPALASSQVKRLSASRRKQHFINQAVRNSDL
VPKAKGRKSLQRLENTQYLLTLLETDGGLPGLEDGDLAPPASPGIFAEACNNATYVEVWN
DFMNRSGEEQERVLRYLEDEGRSKARRRGPGRGEDRRREDPAYTPRECFQRISRRLRAVL
KRSRIPMETLETWEERLLRFFSVSPQAVYTAMLDNSFERLLLHAVCQYMDLISASADLEG
KRQMKVSNRHLDFLPPGLLLSAYLEQHS

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of R3H domain-containing protein 4 (R3HDM4). [1]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of R3H domain-containing protein 4 (R3HDM4). [7]
------------------------------------------------------------------------------------
5 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of R3H domain-containing protein 4 (R3HDM4). [2]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of R3H domain-containing protein 4 (R3HDM4). [3]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of R3H domain-containing protein 4 (R3HDM4). [4]
Testosterone DM7HUNW Approved Testosterone increases the expression of R3H domain-containing protein 4 (R3HDM4). [5]
Bortezomib DMNO38U Approved Bortezomib decreases the expression of R3H domain-containing protein 4 (R3HDM4). [6]
------------------------------------------------------------------------------------

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
3 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
4 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
5 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384. doi: 10.1016/j.taap.2020.115384. Epub 2020 Dec 25.
6 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
7 Effect of aflatoxin B(1), benzo[a]pyrene, and methapyrilene on transcriptomic and epigenetic alterations in human liver HepaRG cells. Food Chem Toxicol. 2018 Nov;121:214-223. doi: 10.1016/j.fct.2018.08.034. Epub 2018 Aug 26.