General Information of Drug Off-Target (DOT) (ID: OTI3ZT7D)

DOT Name Exocyst complex component 8 (EXOC8)
Synonyms Exocyst complex 84 kDa subunit
Gene Name EXOC8
Related Disease
Neurodevelopmental disorder with microcephaly, seizures, and brain atrophy ( )
UniProt ID
EXOC8_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF16528 ; PF08700
Sequence
MAMAMSDSGASRLRRQLESGGFEARLYVKQLSQQSDGDRDLQEHRQRIQALAEETAQNLK
RNVYQNYRQFIETAREISYLESEMYQLSHLLTEQKSSLESIPLTLLPAAAAAGAAAASGG
EEGVGGAGGRDHLRGQAGFFSTPGGASRDGSGPGEEGKQRTLTTLLEKVEGCRHLLETPG
QYLVYNGDLVEYDADHMAQLQRVHGFLMNDCLLVATWLPQRRGMYRYNALYSLDGLAVVN
VKDNPPMKDMFKLLMFPESRIFQAENAKIKREWLEVLEDTKRALSEKRRREQEEAAAPRG
PPQVTSKATNPFEDDEEEEPAVPEVEEEKVDLSMEWIQELPEDLDVCIAQRDFEGAVDLL
DKLNHYLEDKPSPPPVKELRAKVEERVRQLTEVLVFELSPDRSLRGGPKATRRAVSQLIR
LGQCTKACELFLRNRAAAVHTAIRQLRIEGATLLYIHKLCHVFFTSLLETAREFEIDFAG
TDSGCYSAFVVWARSAMGMFVDAFSKQVFDSKESLSTAAECVKVAKEHCQQLGDIGLDLT
FIIHALLVKDIQGALHSYKEIIIEATKHRNSEEMWRRMNLMTPEALGKLKEEMKSCGVSN
FEQYTGDDCWVNLSYTVVAFTKQTMGFLEEALKLYFPELHMVLLESLVEIILVAVQHVDY
SLRCEQDPEKKAFIRQNASFLYETVLPVVEKRFEEGVGKPAKQLQDLRNASRLIRVNPES
TTSVV
Function Component of the exocyst complex involved in the docking of exocytic vesicles with fusion sites on the plasma membrane.
Reactome Pathway
Insulin processing (R-HSA-264876 )
VxPx cargo-targeting to cilium (R-HSA-5620916 )
Translocation of SLC2A4 (GLUT4) to the plasma membrane (R-HSA-1445148 )

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Neurodevelopmental disorder with microcephaly, seizures, and brain atrophy DISRTTRZ Strong Autosomal recessive [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
11 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Exocyst complex component 8 (EXOC8). [2]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Exocyst complex component 8 (EXOC8). [3]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Exocyst complex component 8 (EXOC8). [4]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Exocyst complex component 8 (EXOC8). [5]
Arsenic DMTL2Y1 Approved Arsenic affects the expression of Exocyst complex component 8 (EXOC8). [6]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Exocyst complex component 8 (EXOC8). [7]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Exocyst complex component 8 (EXOC8). [8]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Exocyst complex component 8 (EXOC8). [10]
Trichostatin A DM9C8NX Investigative Trichostatin A affects the expression of Exocyst complex component 8 (EXOC8). [11]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Exocyst complex component 8 (EXOC8). [12]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Exocyst complex component 8 (EXOC8). [13]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of Exocyst complex component 8 (EXOC8). [9]
------------------------------------------------------------------------------------

References

1 High-throughput discovery of novel developmental phenotypes. Nature. 2016 Sep 22;537(7621):508-514. doi: 10.1038/nature19356. Epub 2016 Sep 14.
2 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
3 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
4 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
5 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
6 Drinking-water arsenic exposure modulates gene expression in human lymphocytes from a U.S. population. Environ Health Perspect. 2008 Apr;116(4):524-31. doi: 10.1289/ehp.10861.
7 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
8 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
9 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
10 Alternatives for the worse: Molecular insights into adverse effects of bisphenol a and substitutes during human adipocyte differentiation. Environ Int. 2021 Nov;156:106730. doi: 10.1016/j.envint.2021.106730. Epub 2021 Jun 27.
11 A trichostatin A expression signature identified by TempO-Seq targeted whole transcriptome profiling. PLoS One. 2017 May 25;12(5):e0178302. doi: 10.1371/journal.pone.0178302. eCollection 2017.
12 Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro. Toxicol Lett. 2010 Oct 5;198(2):289-95.
13 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.