General Information of Drug Off-Target (DOT) (ID: OTITB7DO)

DOT Name N-acetylglutamate synthase, mitochondrial (NAGS)
Synonyms EC 2.3.1.1; Amino-acid acetyltransferase
Gene Name NAGS
Related Disease
Hyperammonemia due to N-acetylglutamate synthase deficiency ( )
UniProt ID
NAGS_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
4K30
EC Number
2.3.1.1
Pfam ID
PF00696 ; PF04768
Sequence
MATALMAVVLRAAAVAPRLRGRGGTGGARRLSCGARRRAARGTSPGRRLSTAWSQPQPPP
EEYAGADDVSQSPVAEEPSWVPSPRPPVPHESPEPPSGRSLVQRDIQAFLNQCGASPGEA
RHWLTQFQTCHHSADKPFAVIEVDEEVLKCQQGVSSLAFALAFLQRMDMKPLVVLGLPAP
TAPSGCLSFWEAKAQLAKSCKVLVDALRHNAAAAVPFFGGGSVLRAAEPAPHASYGGIVS
VETDLLQWCLESGSIPILCPIGETAARRSVLLDSLEVTASLAKALRPTKIIFLNNTGGLR
DSSHKVLSNVNLPADLDLVCNAEWVSTKERQQMRLIVDVLSRLPHHSSAVITAASTLLTE
LFSNKGSGTLFKNAERMLRVRSLDKLDQGRLVDLVNASFGKKLRDDYLASLRPRLHSIYV
SEGYNAAAILTMEPVLGGTPYLDKFVVSSSRQGQGSGQMLWECLRRDLQTLFWRSRVTNP
INPWYFKHSDGSFSNKQWIFFWFGLADIRDSYELVNHAKGLPDSFHKPASDPGS
Function Plays a role in the regulation of ureagenesis by producing the essential cofactor N-acetylglutamate (NAG), thus modulating carbamoylphosphate synthase I (CPS1) activity.
Tissue Specificity Highly expressed in the adult liver, kidney and small intestine. Weakly expressed in the fetal liver, lung, pancreas, placenta, heart and brain tissue.
KEGG Pathway
Arginine biosynthesis (hsa00220 )
Metabolic pathways (hsa01100 )
2-Oxocarboxylic acid metabolism (hsa01210 )
Biosynthesis of amino acids (hsa01230 )
Reactome Pathway
Urea cycle (R-HSA-70635 )

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Hyperammonemia due to N-acetylglutamate synthase deficiency DISL14D6 Definitive Autosomal recessive [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
16 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of N-acetylglutamate synthase, mitochondrial (NAGS). [2]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of N-acetylglutamate synthase, mitochondrial (NAGS). [3]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of N-acetylglutamate synthase, mitochondrial (NAGS). [4]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of N-acetylglutamate synthase, mitochondrial (NAGS). [5]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of N-acetylglutamate synthase, mitochondrial (NAGS). [6]
Quercetin DM3NC4M Approved Quercetin increases the expression of N-acetylglutamate synthase, mitochondrial (NAGS). [7]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of N-acetylglutamate synthase, mitochondrial (NAGS). [8]
Azathioprine DMMZSXQ Approved Azathioprine increases the expression of N-acetylglutamate synthase, mitochondrial (NAGS). [9]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of N-acetylglutamate synthase, mitochondrial (NAGS). [10]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of N-acetylglutamate synthase, mitochondrial (NAGS). [11]
OTX-015 DMI8RG1 Phase 1/2 OTX-015 decreases the expression of N-acetylglutamate synthase, mitochondrial (NAGS). [12]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of N-acetylglutamate synthase, mitochondrial (NAGS). [13]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of N-acetylglutamate synthase, mitochondrial (NAGS). [12]
Mivebresib DMCPF90 Phase 1 Mivebresib decreases the expression of N-acetylglutamate synthase, mitochondrial (NAGS). [12]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of N-acetylglutamate synthase, mitochondrial (NAGS). [14]
Bisphenol A DM2ZLD7 Investigative Bisphenol A affects the expression of N-acetylglutamate synthase, mitochondrial (NAGS). [15]
------------------------------------------------------------------------------------
⏷ Show the Full List of 16 Drug(s)

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 The neuroprotective action of the mood stabilizing drugs lithium chloride and sodium valproate is mediated through the up-regulation of the homeodomain protein Six1. Toxicol Appl Pharmacol. 2009 Feb 15;235(1):124-34.
3 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
4 Increased mitochondrial ROS formation by acetaminophen in human hepatic cells is associated with gene expression changes suggesting disruption of the mitochondrial electron transport chain. Toxicol Lett. 2015 Apr 16;234(2):139-50.
5 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
6 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
7 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
8 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
9 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.
10 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
11 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
12 Comprehensive transcriptome profiling of BET inhibitor-treated HepG2 cells. PLoS One. 2022 Apr 29;17(4):e0266966. doi: 10.1371/journal.pone.0266966. eCollection 2022.
13 New insights into BaP-induced toxicity: role of major metabolites in transcriptomics and contribution to hepatocarcinogenesis. Arch Toxicol. 2016 Jun;90(6):1449-58.
14 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
15 Comprehensive analysis of transcriptomic changes induced by low and high doses of bisphenol A in HepG2 spheroids in vitro and rat liver in vivo. Environ Res. 2019 Jun;173:124-134. doi: 10.1016/j.envres.2019.03.035. Epub 2019 Mar 18.