General Information of Drug Off-Target (DOT) (ID: OTJPA6BX)

DOT Name Uncharacterized protein C6orf136 (C6ORF136)
Gene Name C6ORF136
UniProt ID
CF136_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF10184
Sequence
MYQPSRGAARRLGPCLRAYQARPQDQLYPGTLPFPPLWPHSTTTTSPSSPLFWSPLPPRL
PTQRLPQVPPLPLPQIQALSSAWVVLPPGKGEEGPGPELHSGCLDGLRSLFEGPPCPYPG
AWIPFQVPGTAHPSPATPSGDPSMEEHLSVMYERLRQELPKLFLQSHDYSLYSLDVEFIN
EILNIRTKGRTWYILSLTLCRFLAWNYFAHLRLEVLQLTRHPENWTLQARWRLVGLPVHL
LFLRFYKRDKDEHYRTYDAYSTFYLNSSGLICRHRLDKLMPSHSPPTPVKKLLVGALVAL
GLSEPEPDLNLCSKP

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
6 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Uncharacterized protein C6orf136 (C6ORF136). [1]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Uncharacterized protein C6orf136 (C6ORF136). [2]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Uncharacterized protein C6orf136 (C6ORF136). [3]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Uncharacterized protein C6orf136 (C6ORF136). [5]
Testosterone DM7HUNW Approved Testosterone increases the expression of Uncharacterized protein C6orf136 (C6ORF136). [6]
ACYLINE DM9GRTK Phase 2 ACYLINE increases the expression of Uncharacterized protein C6orf136 (C6ORF136). [7]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Uncharacterized protein C6orf136 (C6ORF136). [4]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of Uncharacterized protein C6orf136 (C6ORF136). [8]
------------------------------------------------------------------------------------

References

1 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
4 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
5 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
6 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384. doi: 10.1016/j.taap.2020.115384. Epub 2020 Dec 25.
7 Intraprostatic androgens and androgen-regulated gene expression persist after testosterone suppression: therapeutic implications for castration-resistant prostate cancer. Cancer Res. 2007 May 15;67(10):5033-41.
8 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.