General Information of Drug Off-Target (DOT) (ID: OTK0CPOX)

DOT Name Queuosine 5'-phosphate N-glycosylase/hydrolase (QNG1)
Synonyms EC 3.2.2.-; Q-nucleotide N-glycosylase 1; Queuine salvage protein QNG1; Queuosine-nucleotide N-glycosylase/hydrolase
Gene Name QNG1
UniProt ID
QNG1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
7UGK; 8DL3
EC Number
3.2.2.-
Pfam ID
PF10343
Sequence
MDGLLNPRESSKFIAENSRDVFIDSGGVRRVAELLLAKAAGPELRVEGWKALHELNPRAA
DEAAVNWVFVTDTLNFSFWSEQDEHKCVVRYRGKTYSGYWSLCAAVNRALDEGIPITSAS
YYATVTLDQVRNILRSDTDVSMPLVEERHRILNETGKILLEKFGGSFLNCVRESENSAQK
LMHLVVESFPSYRDVTLFEGKRVSFYKRAQILVADTWSVLEGKGDGCFKDISSITMFADY
RLPQVLAHLGALKYSDDLLKKLLKGEMLSYGDRQEVEIRGCSLWCVELIRDCLLELIEQK
GEKPNGEINSILLDYYLWDYAHDHREDMKGIPFHRIRCIYY
Function
Catalyzes the hydrolysis of queuosine 5'-phosphate, releasing the nucleobase queuine (q). Is required for salvage of queuine from exogenous queuosine (Q) that is imported and then converted to queuosine 5'-phosphate intracellularly. In vitro, can also catalyze the release of the q base directly from Q as substrate; however, it was shown that Q is not the biologically relevant substrate. Shows a very low activity on queuosine 3',5'-diphosphate, and cannot release q from queuosine 3'-phosphate and from the 5'-nucleotides AMP, UMP, CMP or GMP, indicating specificity for the queuine base. Can complement the yeast mutant SPAC589.05c, restoring Q incorporation into tRNA.

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
11 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Queuosine 5'-phosphate N-glycosylase/hydrolase (QNG1). [1]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Queuosine 5'-phosphate N-glycosylase/hydrolase (QNG1). [2]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Queuosine 5'-phosphate N-glycosylase/hydrolase (QNG1). [3]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Queuosine 5'-phosphate N-glycosylase/hydrolase (QNG1). [4]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Queuosine 5'-phosphate N-glycosylase/hydrolase (QNG1). [5]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Queuosine 5'-phosphate N-glycosylase/hydrolase (QNG1). [6]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Queuosine 5'-phosphate N-glycosylase/hydrolase (QNG1). [7]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Queuosine 5'-phosphate N-glycosylase/hydrolase (QNG1). [9]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide decreases the expression of Queuosine 5'-phosphate N-glycosylase/hydrolase (QNG1). [10]
Bisphenol A DM2ZLD7 Investigative Bisphenol A affects the expression of Queuosine 5'-phosphate N-glycosylase/hydrolase (QNG1). [11]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Queuosine 5'-phosphate N-glycosylase/hydrolase (QNG1). [12]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Queuosine 5'-phosphate N-glycosylase/hydrolase (QNG1). [8]
------------------------------------------------------------------------------------

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
3 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
4 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
5 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
6 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
7 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
8 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
9 Synergistic effect of JQ1 and rapamycin for treatment of human osteosarcoma. Int J Cancer. 2015 May 1;136(9):2055-64.
10 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
11 Comprehensive analysis of transcriptomic changes induced by low and high doses of bisphenol A in HepG2 spheroids in vitro and rat liver in vivo. Environ Res. 2019 Jun;173:124-134. doi: 10.1016/j.envres.2019.03.035. Epub 2019 Mar 18.
12 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.