General Information of Drug Off-Target (DOT) (ID: OTMTYOPF)

DOT Name Tetratricopeptide repeat protein 14 (TTC14)
Synonyms TPR repeat protein 14
Gene Name TTC14
Related Disease
Primary ciliary dyskinesia ( )
UniProt ID
TTC14_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF13414
Sequence
MDRDLLRQSLNCHGSSLLSLLRSEQQDNPHFRSLLGSAAEPARGPPPQHPLQGRKEKRVD
NIEIQKFISKKADLLFALSWKSDAPATSEINEDSEDHYAIMPPLEQFMEIPSMDRRELFF
RDIERGDIVIGRISSIREFGFFMVLICLGSGIMRDIAHLEITALCPLRDVPSHSNHGDPL
SYYQTGDIIRAGIKDIDRYHEKLAVSLYSSSLPPHLSGIKLGVISSEELPLYYRRSVELN
SNSLESYENVMQSSLGFVNPGVVEFLLEKLGIDESNPPSLMRGLQSKNFSEDDFASALRK
KQSASWALKCVKIGVDYFKVGRHVDAMNEYNKALEIDKQNVEALVARGALYATKGSLNKA
IEDFELALENCPTHRNARKYLCQTLVERGGQLEEEEKFLNAESYYKKALALDETFKDAED
ALQKLHKYMQKSLELREKQAEKEEKQKTKKIETSAEKLRKLLKEEKRLKKKRRKSTSSSS
VSSADESVSSSSSSSSSGHKRHKKHKRNRSESSRSSRRHSSRASSNQIDQNRKDECYPVP
ANTSASFLNHKQEVEKLLGKQDRLQYEKTQIKEKDRCPLSSSSLEIPDDFGGRSEDPRDF
YNSYKTQAGSSKTEKPYKSERHFSSRRNSSDSFCRNSEDKIYGYRRFEKDIEGRKEHYRR
WEPGSVRHSTSPASSEYSWKSVEKYKKYAHSGSRDFSRHEQRYRLNTNQGEYEREDNYGE
DIKTEVPEEDALSSKEHSESSVKKNLPQNLLNIFNQIAEFEKEKGNKSKN

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Primary ciliary dyskinesia DISOBC7V moderate Genetic Variation [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Tetratricopeptide repeat protein 14 (TTC14). [2]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of Tetratricopeptide repeat protein 14 (TTC14). [9]
TAK-243 DM4GKV2 Phase 1 TAK-243 decreases the sumoylation of Tetratricopeptide repeat protein 14 (TTC14). [10]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 increases the phosphorylation of Tetratricopeptide repeat protein 14 (TTC14). [11]
------------------------------------------------------------------------------------
8 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Tetratricopeptide repeat protein 14 (TTC14). [3]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Tetratricopeptide repeat protein 14 (TTC14). [4]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Tetratricopeptide repeat protein 14 (TTC14). [5]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Tetratricopeptide repeat protein 14 (TTC14). [3]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Tetratricopeptide repeat protein 14 (TTC14). [6]
Hydroquinone DM6AVR4 Approved Hydroquinone decreases the expression of Tetratricopeptide repeat protein 14 (TTC14). [7]
Palbociclib DMD7L94 Approved Palbociclib increases the expression of Tetratricopeptide repeat protein 14 (TTC14). [8]
Bisphenol A DM2ZLD7 Investigative Bisphenol A affects the expression of Tetratricopeptide repeat protein 14 (TTC14). [12]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Drug(s)

References

1 Mutations in CCDC39 and CCDC40 are the major cause of primary ciliary dyskinesia with axonemal disorganization and absent inner dynein arms.Hum Mutat. 2013 Mar;34(3):462-72. doi: 10.1002/humu.22261. Epub 2013 Feb 11.
2 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
3 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
4 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
5 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
6 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
7 Keratinocyte-derived IL-36gama plays a role in hydroquinone-induced chemical leukoderma through inhibition of melanogenesis in human epidermal melanocytes. Arch Toxicol. 2019 Aug;93(8):2307-2320.
8 Cdk4/6 inhibition induces epithelial-mesenchymal transition and enhances invasiveness in pancreatic cancer cells. Mol Cancer Ther. 2012 Oct;11(10):2138-48. doi: 10.1158/1535-7163.MCT-12-0562. Epub 2012 Aug 6.
9 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
10 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
11 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
12 Comprehensive analysis of transcriptomic changes induced by low and high doses of bisphenol A in HepG2 spheroids in vitro and rat liver in vivo. Environ Res. 2019 Jun;173:124-134. doi: 10.1016/j.envres.2019.03.035. Epub 2019 Mar 18.