General Information of Drug Off-Target (DOT) (ID: OTNF40LS)

DOT Name Leucine-rich repeat-containing protein 14B (LRRC14B)
Gene Name LRRC14B
UniProt ID
LR14B_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Sequence
MDTMRSLRFISAEALVSHPQVARQSLDSVAHNLYPLLFKASYLLEQAEVTRAVLGRWPLE
EFRLGALLGPGADHPQDLRDRTCRACLEALVRGLADHVLQDRSRRRLRVADLTGIRDVQV
QRCPCGRALGRWGRTQLLARTCCELQAEPLAAGRPVEVLADLFVTEGNFEAVVQALRPAG
PAPLRVHCPSFRADSLSPSQLLHVLRLAGPGALRKLEVVHNVRLHAGHVQQLLAQVGFPR
LASLTLPTKAFDAPPTYASTPDGEDPLLASIARELSKMAQLTELSVAFSTLTGKIPTLLG
PLQTPLRVLDLANCALNHTDMAFLADCAHAAHLEVLDLSGHNLVSLYPSTFFRLLSQASR
TLRILTLEECGIVDSHVGMLILGLSPCHRLRQLKFLGNPLSARALRRLFTALCELPELRC
IEFPVPKDCYPEGAAYPQDELAMSKFNQQKYDEIAEELRAVLLRADREDIQVSTPLFGSF
DPDIQETSNELGAFLLQAFKTALENFSRALKQIE

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Leucine-rich repeat-containing protein 14B (LRRC14B). [1]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Leucine-rich repeat-containing protein 14B (LRRC14B). [4]
------------------------------------------------------------------------------------
4 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Leucine-rich repeat-containing protein 14B (LRRC14B). [2]
Triclosan DMZUR4N Approved Triclosan decreases the expression of Leucine-rich repeat-containing protein 14B (LRRC14B). [3]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Leucine-rich repeat-containing protein 14B (LRRC14B). [5]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of Leucine-rich repeat-containing protein 14B (LRRC14B). [6]
------------------------------------------------------------------------------------

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
3 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
4 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
5 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
6 Sulforaphane-induced apoptosis in human leukemia HL-60 cells through extrinsic and intrinsic signal pathways and altering associated genes expression assayed by cDNA microarray. Environ Toxicol. 2017 Jan;32(1):311-328.