General Information of Drug Off-Target (DOT) (ID: OTOJ5VRR)

DOT Name Transmembrane protein 128 (TMEM128)
Gene Name TMEM128
UniProt ID
TM128_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF20479
Sequence
MDSSRARQQLRRRFLLLPDAEAQLDREGDAGPETSTAVEKKEKPLPRLNIHSGFWILASI
VVTYYVDFFKTLKENFHTSSWFLCGSALLLVSLSIAFYCIVYLEWYCGIGEYDVKYPALI
PITTASFIAAGICFNIALWHVWSFFTPLLLFTQFMGVVMFITLLG

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
8 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Transmembrane protein 128 (TMEM128). [1]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Transmembrane protein 128 (TMEM128). [2]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Transmembrane protein 128 (TMEM128). [3]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Transmembrane protein 128 (TMEM128). [4]
Quercetin DM3NC4M Approved Quercetin increases the expression of Transmembrane protein 128 (TMEM128). [5]
Testosterone DM7HUNW Approved Testosterone increases the expression of Transmembrane protein 128 (TMEM128). [6]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Transmembrane protein 128 (TMEM128). [8]
OXYQUINOLINE DMZVS9Y Investigative OXYQUINOLINE decreases the expression of Transmembrane protein 128 (TMEM128). [5]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of Transmembrane protein 128 (TMEM128). [7]
------------------------------------------------------------------------------------

References

1 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
2 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
3 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
4 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
5 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
6 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384. doi: 10.1016/j.taap.2020.115384. Epub 2020 Dec 25.
7 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
8 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.