General Information of Drug Off-Target (DOT) (ID: OTOK78E0)

DOT Name Quinone oxidoreductase-like protein 1 (CRYZL1)
Synonyms EC 1.-.-.-; Protein 4P11; Quinone oxidoreductase homolog 1; QOH-1; Zeta-crystallin homolog
Gene Name CRYZL1
UniProt ID
QORL1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
7ND2; 8A3O
EC Number
1.-.-.-
Sequence
MKGLYFQQSSTDEEITFVFQEKEDLPVTEDNFVKLQVKACALSQINTKLLAEMKMKKDLF
PVGREIAGIVLDVGSKVSFFQPDDEVVGILPLDSEDPGLCEVVRVHEHYLVHKPEKVTWT
EAAGSIRDGVRAYTALHYLSHLSPGKSVLIMDGASAFGTIAIQLAHHRGAKVISTACSLE
DKQCLERFRPPIARVIDVSNGKVHVAESCLEETGGLGVDIVLDAGVRLYSKDDEPAVKLQ
LLPHKHDIITLLGVGGHWVTTEENLQLDPPDSHCLFLKGATLAFLNDEVWNLSNVQQGKY
LCILKDVMEKLSTGVFRPQLDEPIPLYEAKVSMEAVQKNQGRKKQVVQF
Tissue Specificity Ubiquitous.

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
8 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Quinone oxidoreductase-like protein 1 (CRYZL1). [1]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Quinone oxidoreductase-like protein 1 (CRYZL1). [2]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Quinone oxidoreductase-like protein 1 (CRYZL1). [3]
Ivermectin DMDBX5F Approved Ivermectin increases the expression of Quinone oxidoreductase-like protein 1 (CRYZL1). [4]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Quinone oxidoreductase-like protein 1 (CRYZL1). [5]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Quinone oxidoreductase-like protein 1 (CRYZL1). [6]
methyl p-hydroxybenzoate DMO58UW Investigative methyl p-hydroxybenzoate increases the expression of Quinone oxidoreductase-like protein 1 (CRYZL1). [7]
QUERCITRIN DM1DH96 Investigative QUERCITRIN decreases the expression of Quinone oxidoreductase-like protein 1 (CRYZL1). [8]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Drug(s)

References

1 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
2 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
3 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
4 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
5 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
6 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
7 Transcriptome dynamics of alternative splicing events revealed early phase of apoptosis induced by methylparaben in H1299 human lung carcinoma cells. Arch Toxicol. 2020 Jan;94(1):127-140. doi: 10.1007/s00204-019-02629-w. Epub 2019 Nov 20.
8 Molecular mechanisms of quercitrin-induced apoptosis in non-small cell lung cancer. Arch Med Res. 2014 Aug;45(6):445-54.