General Information of Drug Off-Target (DOT) (ID: OTQ8T3LB)

DOT Name Kelch-like protein 15 (KLHL15)
Gene Name KLHL15
Related Disease
Intellectual disability, X-linked 103 ( )
Intellectual disability ( )
Intellectual disability, autosomal dominant 40 ( )
UniProt ID
KLH15_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF07707 ; PF00651 ; PF01344 ; PF13964
Sequence
MAGDVEGFCSSIHDTSVSAGFRALYEEGLLLDVTLVIEDHQFQAHKALLATQSDYFRIMF
TADMRERDQDKIHLKGLTATGFSHVLQFMYYGTIELSMNTVHEILQAAMYVQLIEVVKFC
CSFLLAKICLENCAEIMRLLDDFGVNIEGVREKLDTFLLDNFVPLMSRPDFLSYLSFEKL
MSYLDNDHLSRFPEIELYEAVQSWLRHDRRRWRHTDTIIQNIRFCLMTPTSVFEKVKTSE
FYRYSRQLRYEVDQALNYFQNVHQQPLLDMKSSRIRSAKPQTTVFRGMIGHSMVNSKILL
LKKPRVWWELEGPQVPLRPDCLAIVNNFVFLLGGEELGPDGEFHASSKVFRYDPRQNSWL
QMADMSVPRSEFAVGVIGKFIYAVAGRTRDETFYSTERYDITNDKWEFVDPYPVNKYGHE
GTVLNNKLFITGGITSSSTSKQVCVFDPSKEGTIEQRTRRTQVVTNCWENKSKMNYARCF
HKMISYNGKLYVFGGVCVILRASFESQGCPSTEVYNPETDQWTILASMPIGRSGHGVTVL
DKQIMVLGGLCYNGHYSDSILTFDPDENKWKEDEYPRMPCKLDGLQVCNLHFPDYVLDEV
RRCN
Function
Substrate-specific adapter for CUL3 E3 ubiquitin-protein ligase complex. Acts as an adapter for CUL3 to target the serine/threonine-protein phosphatase 2A (PP2A) subunit PPP2R5B for ubiquitination and subsequent proteasomal degradation, thus promoting exchange with other regulatory subunits. Acts as an adapter for CUL3 to target the DNA-end resection factor RBBP8/CtIP for ubiquitination and subsequent proteasomal degradation. Through the regulation of RBBP8/CtIP protein turnover, plays a key role in DNA damage response, favoring DNA double-strand repair through error-prone non-homologous end joining (NHEJ) over error-free, RBBP8-mediated homologous recombination (HR).

Molecular Interaction Atlas (MIA) of This DOT

3 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Intellectual disability, X-linked 103 DIS87ROD Strong X-linked [1]
Intellectual disability DISMBNXP Limited Biomarker [2]
Intellectual disability, autosomal dominant 40 DISAI0IH Limited X-linked recessive [2]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Kelch-like protein 15 (KLHL15). [3]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Kelch-like protein 15 (KLHL15). [8]
------------------------------------------------------------------------------------
8 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Kelch-like protein 15 (KLHL15). [4]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Kelch-like protein 15 (KLHL15). [5]
Arsenic DMTL2Y1 Approved Arsenic affects the expression of Kelch-like protein 15 (KLHL15). [6]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Kelch-like protein 15 (KLHL15). [7]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Kelch-like protein 15 (KLHL15). [9]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Kelch-like protein 15 (KLHL15). [10]
Trichostatin A DM9C8NX Investigative Trichostatin A affects the expression of Kelch-like protein 15 (KLHL15). [11]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Kelch-like protein 15 (KLHL15). [12]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Drug(s)

References

1 Histological alterations on the structure of the excretory renal system in tench (Tinca tinca) after exposure to 17-alpha-ethynylestradiol. Bull Environ Contam Toxicol. 2013 Dec;91(6):623-9. doi: 10.1007/s00128-013-1088-2. Epub 2013 Sep 17.
2 X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes. Mol Psychiatry. 2016 Jan;21(1):133-48. doi: 10.1038/mp.2014.193. Epub 2015 Feb 3.
3 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
4 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
5 Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner. Genome Res. 2012 Nov;22(11):2153-62.
6 Drinking-water arsenic exposure modulates gene expression in human lymphocytes from a U.S. population. Environ Health Perspect. 2008 Apr;116(4):524-31. doi: 10.1289/ehp.10861.
7 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
8 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
9 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
10 Comparison of transcriptome expression alterations by chronic exposure to low-dose bisphenol A in different subtypes of breast cancer cells. Toxicol Appl Pharmacol. 2019 Dec 15;385:114814. doi: 10.1016/j.taap.2019.114814. Epub 2019 Nov 9.
11 A trichostatin A expression signature identified by TempO-Seq targeted whole transcriptome profiling. PLoS One. 2017 May 25;12(5):e0178302. doi: 10.1371/journal.pone.0178302. eCollection 2017.
12 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.