General Information of Drug Off-Target (DOT) (ID: OTQQMO1T)

DOT Name UV-stimulated scaffold protein A
Gene Name UVSSA
Related Disease
UV-sensitive syndrome 3 ( )
UV-sensitive syndrome ( )
UniProt ID
UVSSA_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
5XV8; 7OO3; 7OOP; 7OPC; 7OPD; 8B3D
Pfam ID
PF09740 ; PF20867
Sequence
MDQKLSKLVEELTTSGEPRLNPEKMKELKKICKSSEEQLSRAYRLLIAQLTQEHAEIRLS
AFQIVEELFVRSHQFRMLVVSNFQEFLELTLGTDPAQPLPPPREAAQRLRQATTRAVEGW
NEKFGEAYKKLALGYHFLRHNKKVDFQDTNARSLAERKREEEKQKHLDKIYQERASQAER
EMQEMSGEIESCLTEVESCFRLLVPFDFDPNPETESLGMASGMSDALRSSCAGQVGPCRS
GTPDPRDGEQPCCSRDLPASAGHPRAGGGAQPSQTATGDPSDEDEDSDLEEFVRSHGLGS
HKYTLDVELCSEGLKVQENEDNLALIHAARDTLKLIRNKFLPAVCSWIQRFTRVGTHGGC
LKRAIDLKAELELVLRKYKELDIEPEGGERRRTEALGDAEEDEDDEDFVEVPEKEGYEPH
IPDHLRPEYGLEAAPEKDTVVRCLRTRTRMDEEVSDPTSAAAQLRQLRDHLPPPSSASPS
RALPEPQEAQKLAAERARAPVVPYGVDLHYWGQELPTAGKIVKSDSQHRFWKPSEVEEEV
VNADISEMLRSRHITFAGKFEPVQHWCRAPRPDGRLCERQDRLKCPFHGKIVPRDDEGRP
LDPEDRAREQRRQLQKQERPEWQDPELMRDVEAATGQDLGSSRYSGKGRGKKRRYPSLTN
LKAQADTARARIGRKVFAKAAVRRVVAAMNRMDQKKHEKFSNQFNYALN
Function
Factor involved in transcription-coupled nucleotide excision repair (TC-NER), a mechanism that rapidly removes RNA polymerase II-blocking lesions from the transcribed strand of active genes. Facilitates the ubiquitination of the elongating form of RNA polymerase II (RNA pol IIo) at DNA damage sites, thereby promoting RNA pol IIo backtracking and access by the TC-NER machinery to lesion sites. Acts by promoting stabilization of ERCC6 by recruiting deubiquitinating enzyme USP7 to TC-NER complexes, preventing UV-induced degradation of ERCC6 by the proteasome. Also facilitates transfer of TFIIH to RNA polymerase II. Not involved in processing oxidative damage.
KEGG Pathway
Nucleotide excision repair (hsa03420 )
Reactome Pathway
Transcription-Coupled Nucleotide Excision Repair (TC-NER) (R-HSA-6781827 )
Dual incision in TC-NER (R-HSA-6782135 )
Gap-filling DNA repair synthesis and ligation in TC-NER (R-HSA-6782210 )
Formation of TC-NER Pre-Incision Complex (R-HSA-6781823 )

Molecular Interaction Atlas (MIA) of This DOT

2 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
UV-sensitive syndrome 3 DISDJW78 Definitive Autosomal recessive [1]
UV-sensitive syndrome DISHCN4B Supportive Autosomal recessive [2]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of UV-stimulated scaffold protein A. [3]
Arsenic DMTL2Y1 Approved Arsenic increases the methylation of UV-stimulated scaffold protein A. [6]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of UV-stimulated scaffold protein A. [9]
------------------------------------------------------------------------------------
5 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of UV-stimulated scaffold protein A. [4]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of UV-stimulated scaffold protein A. [5]
Testosterone DM7HUNW Approved Testosterone decreases the expression of UV-stimulated scaffold protein A. [7]
Methotrexate DM2TEOL Approved Methotrexate increases the expression of UV-stimulated scaffold protein A. [8]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of UV-stimulated scaffold protein A. [10]
------------------------------------------------------------------------------------

References

1 Flexible and scalable diagnostic filtering of genomic variants using G2P with Ensembl VEP. Nat Commun. 2019 May 30;10(1):2373. doi: 10.1038/s41467-019-10016-3.
2 Mutations in UVSSA cause UV-sensitive syndrome and impair RNA polymerase IIo processing in transcription-coupled nucleotide-excision repair. Nat Genet. 2012 May;44(5):586-92. doi: 10.1038/ng.2229.
3 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
4 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
5 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
6 Epigenetic changes in individuals with arsenicosis. Chem Res Toxicol. 2011 Feb 18;24(2):165-7. doi: 10.1021/tx1004419. Epub 2011 Feb 4.
7 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384. doi: 10.1016/j.taap.2020.115384. Epub 2020 Dec 25.
8 The contribution of methotrexate exposure and host factors on transcriptional variance in human liver. Toxicol Sci. 2007 Jun;97(2):582-94.
9 Effect of aflatoxin B(1), benzo[a]pyrene, and methapyrilene on transcriptomic and epigenetic alterations in human liver HepaRG cells. Food Chem Toxicol. 2018 Nov;121:214-223. doi: 10.1016/j.fct.2018.08.034. Epub 2018 Aug 26.
10 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.