General Information of Drug Off-Target (DOT) (ID: OTS7WBCP)

DOT Name Damage-control phosphatase ARMT1 (ARMT1)
Synonyms EC 3.1.3.-; Acidic residue methyltransferase 1; Protein-glutamate O-methyltransferase; EC 2.1.1.-; Sugar phosphate phosphatase ARMT1
Gene Name ARMT1
Related Disease
Advanced cancer ( )
UniProt ID
ARMT1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
6UMQ; 6UMR
EC Number
2.1.1.-; 3.1.3.-
Pfam ID
PF01937
Sequence
MAVVPASLSGQDVGSFAYLTIKDRIPQILTKVIDTLHRHKSEFFEKHGEEGVEAEKKAIS
LLSKLRNELQTDKPFIPLVEKFVDTDIWNQYLEYQQSLLNESDGKSRWFYSPWLLVECYM
YRRIHEAIIQSPPIDYFDVFKESKEQNFYGSQESIIALCTHLQQLIRTIEDLDENQLKDE
FFKLLQISLWGNKCDLSLSGGESSSQNTNVLNSLEDLKPFILLNDMEHLWSLLSNCKKTR
EKASATRVYIVLDNSGFELVTDLILADFLLSSELATEVHFYGKTIPWFVSDTTIHDFNWL
IEQVKHSNHKWMSKCGADWEEYIKMGKWVYHNHIFWTLPHEYCAMPQVAPDLYAELQKAH
LILFKGDLNYRKLTGDRKWEFSVPFHQALNGFHPAPLCTIRTLKAEIQVGLQPGQGEQLL
ASEPSWWTTGKYGIFQYDGPL
Function
Metal-dependent phosphatase that shows phosphatase activity against several substrates, including fructose-1-phosphate and fructose-6-phosphate. Its preference for fructose-1-phosphate, a strong glycating agent that causes DNA damage rather than a canonical yeast metabolite, suggests a damage-control function in hexose phosphate metabolism. Has also been shown to have O-methyltransferase activity that methylates glutamate residues of target proteins to form gamma-glutamyl methyl ester residues. Possibly methylates PCNA, suggesting it is involved in the DNA damage response.

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Advanced cancer DISAT1Z9 Strong Genetic Variation [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Damage-control phosphatase ARMT1 (ARMT1). [2]
------------------------------------------------------------------------------------
10 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Damage-control phosphatase ARMT1 (ARMT1). [3]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Damage-control phosphatase ARMT1 (ARMT1). [4]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Damage-control phosphatase ARMT1 (ARMT1). [5]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Damage-control phosphatase ARMT1 (ARMT1). [6]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Damage-control phosphatase ARMT1 (ARMT1). [7]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Damage-control phosphatase ARMT1 (ARMT1). [8]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Damage-control phosphatase ARMT1 (ARMT1). [9]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Damage-control phosphatase ARMT1 (ARMT1). [10]
Clozapine DMFC71L Approved Clozapine increases the expression of Damage-control phosphatase ARMT1 (ARMT1). [11]
Benzatropine DMF7EXL Approved Benzatropine increases the expression of Damage-control phosphatase ARMT1 (ARMT1). [11]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 Drug(s)

References

1 Identification of a neoantigen epitope in a melanoma patient with good response to anti-PD-1 antibody therapy.Immunol Lett. 2019 Apr;208:52-59. doi: 10.1016/j.imlet.2019.02.004. Epub 2019 Mar 14.
2 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
3 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
4 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
5 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
6 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
7 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
8 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
9 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
10 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
11 Cannabidiol Displays Proteomic Similarities to Antipsychotics in Cuprizone-Exposed Human Oligodendrocytic Cell Line MO3.13. Front Mol Neurosci. 2021 May 28;14:673144. doi: 10.3389/fnmol.2021.673144. eCollection 2021.