General Information of Drug Off-Target (DOT) (ID: OTTWXIOI)

DOT Name Triokinase/FMN cyclase (TKFC)
Synonyms Bifunctional ATP-dependent dihydroxyacetone kinase/FAD-AMP lyase (cyclizing)
Gene Name TKFC
Related Disease
Sengers syndrome ( )
Triokinase and FMN cyclase deficiency syndrome ( )
UniProt ID
TKFC_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
2.7.1.28; 2.7.1.29; 4.6.1.15
Pfam ID
PF02733 ; PF02734
Sequence
MTSKKLVNSVAGCADDALAGLVACNPNLQLLQGHRVALRSDLDSLKGRVALLSGGGSGHE
PAHAGFIGKGMLTGVIAGAVFTSPAVGSILAAIRAVAQAGTVGTLLIVKNYTGDRLNFGL
AREQARAEGIPVEMVVIGDDSAFTVLKKAGRRGLCGTVLIHKVAGALAEAGVGLEEIAKQ
VNVVAKAMGTLGVSLSSCSVPGSKPTFELSADEVELGLGIHGEAGVRRIKMATADEIVKL
MLDHMTNTTNASHVPVQPGSSVVMMVNNLGGLSFLELGIIADATVRSLEGRGVKIARALV
GTFMSALEMPGISLTLLLVDEPLLKLIDAETTAAAWPNVAAVSITGRKRSRVAPAEPQEA
PDSTAAGGSASKRMALVLERVCSTLLGLEEHLNALDRAAGDGDCGTTHSRAARAIQEWLK
EGPPPASPAQLLSKLSVLLLEKMGGSSGALYGLFLTAAAQPLKAKTSLPAWSAAMDAGLE
AMQKYGKAAPGDRTMLDSLWAAGQELQAWKSPGADLLQVLTKAVKSAEAAAEATKNMEAG
AGRASYISSARLEQPDPGAVAAAAILRAILEVLQS
Function
Catalyzes both the phosphorylation of dihydroxyacetone and of glyceraldehyde, and the splitting of ribonucleoside diphosphate-X compounds among which FAD is the best substrate. Represses IFIH1-mediated cellular antiviral response.
Tissue Specificity Detected in erythrocytes (at protein level).
KEGG Pathway
Fructose and mannose metabolism (hsa00051 )
Glycerolipid metabolism (hsa00561 )
Metabolic pathways (hsa01100 )
Carbon metabolism (hsa01200 )
RIG-I-like receptor sig.ling pathway (hsa04622 )
Reactome Pathway
Fructose catabolism (R-HSA-70350 )
SARS-CoV-1 activates/modulates innate immune responses (R-HSA-9692916 )
SARS-CoV-2 activates/modulates innate and adaptive immune responses (R-HSA-9705671 )
DDX58/IFIH1-mediated induction of interferon-alpha/beta (R-HSA-168928 )
BioCyc Pathway
MetaCyc:HS07615-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

2 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Sengers syndrome DISV24KG Supportive Autosomal recessive [1]
Triokinase and FMN cyclase deficiency syndrome DISJU64N Limited Autosomal recessive [2]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
11 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Triokinase/FMN cyclase (TKFC). [3]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Triokinase/FMN cyclase (TKFC). [4]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Triokinase/FMN cyclase (TKFC). [5]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Triokinase/FMN cyclase (TKFC). [6]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Triokinase/FMN cyclase (TKFC). [7]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Triokinase/FMN cyclase (TKFC). [8]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Triokinase/FMN cyclase (TKFC). [9]
Troglitazone DM3VFPD Approved Troglitazone decreases the expression of Triokinase/FMN cyclase (TKFC). [10]
Rosiglitazone DMILWZR Approved Rosiglitazone decreases the expression of Triokinase/FMN cyclase (TKFC). [10]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Triokinase/FMN cyclase (TKFC). [11]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Triokinase/FMN cyclase (TKFC). [12]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Drug(s)

References

1 Bi-allelic Variants in TKFC Encoding Triokinase/FMN Cyclase Are Associated with Cataracts and Multisystem Disease. Am J Hum Genet. 2020 Feb 6;106(2):256-263. doi: 10.1016/j.ajhg.2020.01.005. Epub 2020 Jan 30.
2 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
3 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
4 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
5 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
6 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
7 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
8 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
9 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
10 Transcriptomic analysis of untreated and drug-treated differentiated HepaRG cells over a 2-week period. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):27-35.
11 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
12 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.