General Information of Drug Off-Target (DOT) (ID: OTUHIICR)

DOT Name Small acidic protein (C11ORF58)
Gene Name C11ORF58
Related Disease
Burkitt lymphoma ( )
Advanced cancer ( )
Neoplasm ( )
UniProt ID
SMAP_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF15477
Sequence
MSAARESHPHGVKRSASPDDDLGSSNWEAADLGNEERKQKFLRLMGAGKKEHTGRLVIGD
HKSTSHFRTGEEDKKINEELESQYQQSMDSKLSGRYRRHCGLGFSEVEDHDGEGDVAGDD
DDDDDDSPDPESPDDSESDSESEKEESAEELQAAEHPDEVEDPKNKKDAKSNYKMMFVKS
SGS

Molecular Interaction Atlas (MIA) of This DOT

3 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Burkitt lymphoma DIS9D5XU Strong Biomarker [1]
Advanced cancer DISAT1Z9 Limited Biomarker [2]
Neoplasm DISZKGEW Limited Biomarker [2]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
5 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate affects the expression of Small acidic protein (C11ORF58). [3]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Small acidic protein (C11ORF58). [4]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Small acidic protein (C11ORF58). [5]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Small acidic protein (C11ORF58). [3]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Small acidic protein (C11ORF58). [7]
------------------------------------------------------------------------------------
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Small acidic protein (C11ORF58). [6]
------------------------------------------------------------------------------------

References

1 Protein phosphatase 2A activation as a therapeutic strategy for managing MYC-driven cancers.J Biol Chem. 2020 Jan 17;295(3):757-770. doi: 10.1074/jbc.RA119.011443. Epub 2019 Dec 10.
2 A SMAP in the face for cancer.J Clin Invest. 2017 Jun 1;127(6):2048-2050. doi: 10.1172/JCI94763. Epub 2017 May 15.
3 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
4 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
5 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
6 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
7 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.