General Information of Drug Off-Target (DOT) (ID: OTUXTOSF)

DOT Name Splicing factor 3B subunit 5 (SF3B5)
Synonyms SF3b5; Pre-mRNA-splicing factor SF3b 10 kDa subunit
Gene Name SF3B5
UniProt ID
SF3B5_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
5IFE ; 5O9Z ; 5Z56 ; 5Z57 ; 5Z58 ; 5ZYA ; 6AH0 ; 6EN4 ; 6FF4 ; 6FF7 ; 6QX9 ; 6Y50 ; 6Y5Q ; 7ABG ; 7ABH ; 7ABI ; 7B0I ; 7B91 ; 7B92 ; 7B9C ; 7DVQ ; 7EVN ; 7EVO ; 7KTS ; 7OMF ; 7ONB ; 7OPI ; 7Q3L ; 7Q4O ; 7Q4P ; 7QTT ; 7VPX ; 8CH6 ; 8H7G ; 8HK1
Pfam ID
PF07189
Sequence
MTDRYTIHSQLEHLQSKYIGTGHADTTKWEWLVNQHRDSYCSYMGHFDLLNYFAIAENES
KARVRFNLMEKMLQPCGPPADKPEEN
Function
Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs. The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing. Within the 17S U2 SnRNP complex, SF3B4 is part of the SF3B subcomplex, which is required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence in pre-mRNA. Sequence independent binding of SF3A and SF3B subcomplexes upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA. Also acts as a component of the minor spliceosome, which is involved in the splicing of U12-type introns in pre-mRNAs.
KEGG Pathway
Spliceosome (hsa03040 )
Reactome Pathway
mRNA Splicing - Minor Pathway (R-HSA-72165 )
mRNA Splicing - Major Pathway (R-HSA-72163 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
11 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Splicing factor 3B subunit 5 (SF3B5). [1]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Splicing factor 3B subunit 5 (SF3B5). [2]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Splicing factor 3B subunit 5 (SF3B5). [3]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Splicing factor 3B subunit 5 (SF3B5). [4]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Splicing factor 3B subunit 5 (SF3B5). [5]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Splicing factor 3B subunit 5 (SF3B5). [6]
Resveratrol DM3RWXL Phase 3 Resveratrol increases the expression of Splicing factor 3B subunit 5 (SF3B5). [7]
Genistein DM0JETC Phase 2/3 Genistein increases the expression of Splicing factor 3B subunit 5 (SF3B5). [7]
Tocopherol DMBIJZ6 Phase 2 Tocopherol increases the expression of Splicing factor 3B subunit 5 (SF3B5). [8]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Splicing factor 3B subunit 5 (SF3B5). [7]
chloropicrin DMSGBQA Investigative chloropicrin increases the expression of Splicing factor 3B subunit 5 (SF3B5). [10]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of Splicing factor 3B subunit 5 (SF3B5). [9]
------------------------------------------------------------------------------------

References

1 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
4 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
5 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
6 Minimal peroxide exposure of neuronal cells induces multifaceted adaptive responses. PLoS One. 2010 Dec 17;5(12):e14352. doi: 10.1371/journal.pone.0014352.
7 Gene expression profiling in Ishikawa cells: a fingerprint for estrogen active compounds. Toxicol Appl Pharmacol. 2009 Apr 1;236(1):85-96.
8 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
9 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
10 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.