General Information of Drug Off-Target (DOT) (ID: OTXF5ICU)

DOT Name Gamma-aminobutyric acid receptor subunit epsilon (GABRE)
Synonyms GABA(A) receptor subunit epsilon
Gene Name GABRE
UniProt ID
GBRE_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF02931 ; PF02932
Sequence
MLSKVLPVLLGILLILQSRVEGPQTESKNEASSRDVVYGPQPQPLENQLLSEETKSTETE
TGSRVGKLPEASRILNTILSNYDHKLRPGIGEKPTVVTVEISVNSLGPLSILDMEYTIDI
IFSQTWYDERLCYNDTFESLVLNGNVVSQLWIPDTFFRNSKRTHEHEITMPNQMVRIYKD
GKVLYTIRMTIDAGCSLHMLRFPMDSHSCPLSFSSFSYPENEMIYKWENFKLEINEKNSW
KLFQFDFTGVSNKTEIITTPVGDFMVMTIFFNVSRRFGYVAFQNYVPSSVTTMLSWVSFW
IKTESAPARTSLGITSVLTMTTLGTFSRKNFPRVSYITALDFYIAICFVFCFCALLEFAV
LNFLIYNQTKAHASPKLRHPRINSRAHARTRARSRACARQHQEAFVCQIVTTEGSDGEER
PSCSAQQPPSPGSPEGPRSLCSKLACCEWCKRFKKYFCMVPDCEGSTWQQGRLCIHVYRL
DNYSRVVFPVTFFFFNVLYWLVCLNL
Function GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Tissue Specificity Expressed in many tissues. Highest levels of expression in adult heart and placenta.
KEGG Pathway
Neuroactive ligand-receptor interaction (hsa04080 )
Retrograde endocan.binoid sig.ling (hsa04723 )
GABAergic sy.pse (hsa04727 )
Morphine addiction (hsa05032 )
Nicotine addiction (hsa05033 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
11 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Gamma-aminobutyric acid receptor subunit epsilon (GABRE). [1]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Gamma-aminobutyric acid receptor subunit epsilon (GABRE). [2]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Gamma-aminobutyric acid receptor subunit epsilon (GABRE). [3]
Quercetin DM3NC4M Approved Quercetin increases the expression of Gamma-aminobutyric acid receptor subunit epsilon (GABRE). [4]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Gamma-aminobutyric acid receptor subunit epsilon (GABRE). [5]
Testosterone DM7HUNW Approved Testosterone decreases the expression of Gamma-aminobutyric acid receptor subunit epsilon (GABRE). [6]
Dexamethasone DMMWZET Approved Dexamethasone decreases the expression of Gamma-aminobutyric acid receptor subunit epsilon (GABRE). [7]
Azathioprine DMMZSXQ Approved Azathioprine increases the expression of Gamma-aminobutyric acid receptor subunit epsilon (GABRE). [8]
Genistein DM0JETC Phase 2/3 Genistein decreases the expression of Gamma-aminobutyric acid receptor subunit epsilon (GABRE). [9]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Gamma-aminobutyric acid receptor subunit epsilon (GABRE). [11]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Gamma-aminobutyric acid receptor subunit epsilon (GABRE). [13]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Gamma-aminobutyric acid receptor subunit epsilon (GABRE). [10]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the methylation of Gamma-aminobutyric acid receptor subunit epsilon (GABRE). [12]
------------------------------------------------------------------------------------

References

1 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
2 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
3 Gonadal steroids regulate GABAA receptor subunit mRNA expression in NT2-N neurons. Brain Res Mol Brain Res. 2005 Aug 18;138(2):105-15. doi: 10.1016/j.molbrainres.2004.10.047.
4 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
5 Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells. Toxicol Appl Pharmacol. 2012 Jun 1;261(2):204-16.
6 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384. doi: 10.1016/j.taap.2020.115384. Epub 2020 Dec 25.
7 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
8 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.
9 Dose- and time-dependent transcriptional response of Ishikawa cells exposed to genistein. Toxicol Sci. 2016 May;151(1):71-87.
10 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
11 BET bromodomain protein inhibition is a therapeutic option for medulloblastoma. Oncotarget. 2013 Nov;4(11):2080-95.
12 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
13 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.