General Information of Drug Off-Target (DOT) (ID: OTXI778H)

DOT Name Interferon alpha-inducible protein 27-like protein 1 (IFI27L1)
Synonyms Interferon-stimulated gene 12c protein; ISG12(c); ISG12C
Gene Name IFI27L1
UniProt ID
I27L1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2LOQ
Pfam ID
PF06140
Sequence
MGKESGWDSGRAAVAAVVGGVVAVGTVLVALSAMGFTSVGIAASSIAAKMMSTAAIANGG
GVAAGSLVAILQSVGAAGLSVTSKVIGGFAGTALGAWLGSPPSS
Function Plays a role in the apoptotic process and has a pro-apoptotic activity.

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Interferon alpha-inducible protein 27-like protein 1 (IFI27L1). [1]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Interferon alpha-inducible protein 27-like protein 1 (IFI27L1). [4]
------------------------------------------------------------------------------------
5 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin affects the expression of Interferon alpha-inducible protein 27-like protein 1 (IFI27L1). [2]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Interferon alpha-inducible protein 27-like protein 1 (IFI27L1). [3]
Quercetin DM3NC4M Approved Quercetin increases the expression of Interferon alpha-inducible protein 27-like protein 1 (IFI27L1). [5]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Interferon alpha-inducible protein 27-like protein 1 (IFI27L1). [6]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Interferon alpha-inducible protein 27-like protein 1 (IFI27L1). [7]
------------------------------------------------------------------------------------

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
3 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
4 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
5 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
6 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
7 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.